Abstract:
A system for optimizing blending. The system can include a processor configured to aggregate material information, aggregate production information, model consumer liking of the at least one product, and provide plan information for controlling production resources based on the material information, the production information, and the consumer liking. The material information can be associated with a product input of the at least one product. The production information can be associated with the production resources of the at least one product.
Abstract:
A blending plan for not-from-concentrate consumable products, such as liquid food and beverage products, may be optimized by utilizing a computing device executing a software algorithm. The computing device may receive inputs associated with a blending plan for the production of a consumable product over a predetermined time interval. The computing device may further apply constraints to each of the one or more inputs. The computing device may further assess penalties in a mathematical function which includes the inputs and the constraints. The function may then generate an optimized blending plan, using the applied constraints and the penalties, which minimizes costs and complexity associated with the production of the consumable product while maximizing quality.
Abstract:
A blending plan for concentrated consumable products, such as liquid food and beverage products, may be optimized by utilizing a computer device executing a software algorithm. The computing device receives one or more inputs associated with the blending of various components employed in producing quantities of a concentrated consumable product over a predetermined time interval. The computing device may be further utilized to apply constraints to each of the one or more inputs. The constraints may be utilized to enforce quality, raw material and component bounds, supply and demand requirements, product and component supply balance, capacity limitations and business rules in order to minimize costs and complexity associated with the production of a concentrated consumable product while maximizing quality, thereby optimizing the blending plan.
Abstract:
A system for optimizing blending for mass production produced products. The system may include a processor configured to aggregate material information, aggregate production information, model consumer liking of the at least one product, and provide plan information for controlling production resources based on the material information, the production information, and the consumer liking. The material information can be associated with a product input of the at least one product. The production information can be associated with the production resources of the at least one product.
Abstract:
A system for optimizing blending for mass production produced products. The system may include a processor configured to aggregate material information, aggregate production information, model consumer liking of the at least one product, and provide plan information for controlling production resources based on the material information, the production information, and the consumer liking. The material information can be associated with a product input of the at least one product. The production information can be associated with the production resources of the at least one product.
Abstract:
A system for optimizing blending. The system can include a processor configured to aggregate material information, aggregate production information, model consumer liking of the at least one product, and provide plan information for controlling production resources based on the material information, the production information, and the consumer liking. The material information can be associated with a product input of the at least one product. The production information can be associated with the production resources of the at least one product.
Abstract:
A blending plan for concentrated consumable products, such as liquid food and beverage products, may be optimized by utilizing a computer device executing a software algorithm. The computing device receives one or more inputs associated with the blending of various components employed in producing quantities of a concentrated consumable product over a predetermined time interval. The computing device may be further utilized to apply constraints to each of the one or more inputs. The constraints may be utilized to enforce quality, raw material and component bounds, supply and demand requirements, product and component supply balance, capacity limitations and business rules in order to minimize costs and complexity associated with the production of a concentrated consumable product while maximizing quality, thereby optimizing the blending plan.