摘要:
An embodiment in accordance with the present invention provides a tracking system architecture for tracking surgical tools in a surgical field. The system architecture is integrated into a mask placed directly on the face of the patient. The system can combine multiple imaging and range finding technologies for tracking the eye and the surgical instrumentation. The system can be used to generate a three dimensional scene for use during the surgical procedure. Additionally, the system can incorporate a modular design to account for variable anatomy. The system described is for eye surgery applications. However, the system could also be used for other procedures such as cochlear implant or craniotomy.
摘要:
A cooperatively controlled robotic system includes a main robot assembly, and an arm assembly comprising a proximal end and a distal end. The arm assembly is connected to the main robot assembly at the proximal end. The system also includes a tool assembly connected to the arm assembly at the distal end, a first force sensor between the distal end of the arm assembly and the tool assembly, and a second force sensor between the proximal end of the arm assembly and the main robot assembly. The system includes a control system that is configured to determine a force applied at the first force sensor based on a force detected by the second force sensor, and to compare the determined force to a force detected by the first force sensor to detect a failure of at least one of the first and second force sensors.
摘要:
A system and method for tool exchange during surgery for cooperatively controlled robots comprises a tool holder for receiving a surgical tool adapted to be held by a robot and a surgeon, a tool holding element for constraining downward motion of the tool while allowing low force removal of the surgical tool from the holder, a first sensor for detecting if the surgical tool is docked within the tool holder, and a selector for automatically selecting different movements or actions of the tool holder to be performed based upon information detected by the first sensor. The system and method of the present invention provides an advantage to an often slow moving cooperative robot, by increasing the speed by which the tool holder may move in the direction away from the patient.
摘要:
An embodiment in accordance with the present invention provides a tracking system architecture for tracking surgical tools in a surgical field. The system architecture is integrated into a mask placed directly on the face of the patient. The system can combine multiple imaging and range finding technologies for tracking the eye and the surgical instrumentation. The system can be used to generate a three dimensional scene for use during the surgical procedure. Additionally, the system can incorporate a modular design to account for variable anatomy. The system described is for eye surgery applications. However, the system could also be used for other procedures such as cochlear implant or craniotomy.
摘要:
A system and method for tool exchange during surgery for cooperatively controlled robots comprises a tool holder for receiving a surgical tool adapted to be held by a robot and a surgeon, a tool holding element for constraining downward motion of the tool while allowing low force removal of the surgical tool from the holder, a first sensor for detecting if the surgical tool is docked within the tool holder, and a selector for automatically selecting different movements or actions of the tool holder to be performed based upon information detected by the first sensor. The system and method of the present invention provides an advantage to an often slow moving cooperative robot, by increasing the speed by which the tool holder may move in the direction away from the patient.
摘要:
A cooperatively controlled robotic system includes a main robot assembly, and an arm assembly comprising a proximal end and a distal end. The arm assembly is connected to the main robot assembly at the proximal end. The system also includes a tool assembly connected to the arm assembly at the distal end, a first force sensor between the distal end of the arm assembly and the tool assembly, and a second force sensor between the proximal end of the arm assembly and the main robot assembly. The system includes a control system that is configured to determine a force applied at the first force sensor based on a force detected by the second force sensor, and to compare the determined force to a force detected by the first force sensor to detect a failure of at least one of the first and second force sensors.