摘要:
Methods and assemblies for the construction of liquid-phase alloy nanoparticles are presented. Particle formation is directed by molecular self-assembly and assisted by sonication. In some embodiments, eutectic gallium-indium (EGaIn) nanoparticles are formed. In these embodiments, the bulk liquid alloy is ultrasonically dispersed, fast thiolate self-assembly at the EGaIn interface protects the material against oxidation. The assembly shell has been designed to include intermolecular hydrogen bonds, which induce surface strain, assisting in cleavage of the alloy particles to the nanoscale. X-ray diffraction and TEM analyses reveal that the nanoscale particles are in an amorphous or liquid phase, with no observed faceting.
摘要:
Methods and assemblies for the construction of liquid-phase alloy nanoparticles are presented. Particle formation is directed by molecular self-assembly and assisted by sonication. In some embodiments, eutectic gallium-indium (EGaIn) nanoparticles are formed. In these embodiments, the bulk liquid alloy is ultrasonically dispersed, fast thiolate self-assembly at the EGaIn interface protects the material against oxidation. The assembly shell has been designed to include intermolecular hydrogen bonds, which induce surface strain, assisting in cleavage of the alloy particles to the nanoscale. X-ray diffraction and TEM analyses reveal that the nanoscale particles are in an amorphous or liquid phase, with no observed faceting.
摘要:
Described are metal organochalcognides which are bulk nanomaterials, expressing monolayer properties in their as-synthesized states. Also described are certain novel metal organochalcogenide compositions. Further described are several methods of preparation of metal organochaleogenides, both solution- and vapor deposition-based, and methods of use of the resulting metal chalcogenides in assays and devices.