Abstract:
A gas processing apparatus includes: a mounting part; a gas supply part located above the mounting part and having a plurality of first gas supply holes; a gas supply path forming part configured to form a supply path of a processing gas, the gas supply path forming part including a flat opposing surface which faces the gas supply part from above and defines a first diffusion space for diffusing the processing gas in a lateral direction; a recess surrounding a central portion of the opposing surface; and a plurality of gas dispersion portions located in the recess surrounding the central portion of the opposing surface without protruding from the opposing surface, each of the plurality of gas dispersion portions having a plurality of gas discharge holes extending along a circumferential direction so as to laterally disperse the processing gas supplied from the supply path in the first diffusion space.
Abstract:
An apparatus includes: a vacuum container having a vacuum atmosphere for a film forming process on each substrate; a stage for heating the substrate mounted thereon; a shower head including a facing portion that faces the stage and ejection ports opened in the facing portion, which supplies a film-forming gas to the substrate through the ports so as to form a film on the substrate; a cleaning gas supply part for supplying a cleaning gas into the container to clean the interior of the container in a state where no substrate is accommodated in the container while the film forming process is applied on the each of the plurality of substrates; and a non-porous coating film for covering a base material constituting the shower head at least in the facing portion to form a surface of the shower head when the film-forming gas is supplied to each substrate.
Abstract:
Provided are a substrate processing method and a substrate processing apparatus for forming a low-resistance metal-containing nitride film. The substrate processing method includes: a step of providing a substrate in a processing container; a step of forming a metal-containing nitride film on the substrate by repeating supplying an organic metal-containing gas and a nitrogen-containing gas alternately for a first predetermined number of cycles; a step of modifying the metal-containing nitride film by generating plasma in the processing container; and a step of repeating the step of forming the metal-containing nitride film and the step of modifying the metal-containing nitride film for a second predetermined number of cycles.
Abstract:
A film forming apparatus, which forms a film on a substrate mounted on a stage in a process chamber by supplying a film forming gas to the substrate from a film forming gas supply facing the stage, includes: a first annular body surrounding the stage with a gap interposed between the stage and the first annular body; a second annular body extending downward from an inner peripheral portion of the first annular body; and a third annular body extending from a peripheral portion of the stage such that the third annular body has a flow path defining surface extending along an inner peripheral surface of the second annular body and a lower end surface of the second annular body.
Abstract:
There is provided a substrate mounting method of brining a substrate close to a mounting table to mount the substrate on the mounting table by reducing a protrusion amount of a plurality of projections configured to protrude from a substrate-mounting surface of the mounting table and to support the substrate, the protrusion amount being defined to protrude from the substrate-mounting surface. The method includes: after at least a portion of the substrate is brought into contact with the substrate-mounting surface, halting an operation of bringing the substrate close to the mounting table; and after the halting the operation of bringing the substrate close to the mounting table, resuming the operation of bringing the substrate close to the mounting table.
Abstract:
There is provided a gas processing apparatus, including: a vacuum vessel; a mounting part installed in the vacuum vessel and configured to mount a substrate; an opposing part configured to face the mounting part and including first gas discharge ports configured to discharge a processing gas to the substrate; a first diffusion space configured to communicate with the first gas discharge ports; second gas discharge ports formed in a ceiling portion and configured to supply the processing gas to a central portion of the first diffusion space; a second diffusion space configured to communicate with the second gas discharge ports; a gas supply path installed at an upstream side of the second diffusion space and configured to supply the processing gas to the second diffusion space; and third gas discharge ports configured to be opened to an outer portion of the ceiling portion in an oblique direction.
Abstract:
A gas supply apparatus for forming a film by supplying a source gas, a substitution gas, and a reaction gas to a substrate in a processing chamber includes a source gas flow passage; a reaction gas flow passage; a first and second carrier gas flow passages connected to the source gas flow passage and the reaction gas flow passage; a substitution gas flow passage configured to supply the substitution gas into the processing chamber through a supply control device; a gas storage part installed in the substitution gas flow passage, and configured to store the substitution gas; a valve installed in the substitution gas flow passage, and installed in a downstream side of the gas storage part; and a control unit configured to control opening/closing of the valve such that the substitution gas is stored in the gas storage part to increase an internal pressure of the gas storage part.
Abstract:
There is provided a film forming apparatus including gas supply paths, retaining units, valves, a purge gas supply unit and a control unit. The control unit is configured to implements a film forming process for sequentially performing operations of actuating the valves such that reaction gases are retained in the retaining units, the internal pressures of the retaining units are increased and then the reaction gases are supplied from the retaining units into the process chamber, and a purging process for subsequently repeating, a plurality number of times, operations of actuating the valves such that the purge gas is retained in the retaining units, the internal pressures of the retaining units are increased to a pressure higher than the internal pressures of the retaining units which is increased in the film forming process, and then the purge gas is supplied from the retaining units into the process chamber.