摘要:
A method for manufacturing, a secondary battery separator including a porous resin film in which pores have three-dimensionally ordered structure and are in mutual communication via through-holes. The method includes: uniformly dispersing spherical microparticles having narrow particle size distribution in a dispersion medium to prepare a microparticles-dispersed slurry; drying slurry to obtain a spherical microparticles-dispersed film; heat-treating the film to form a microparticles-resin film in which the microparticles are regularly arrayed in three-dimensions in a resin matrix; and contacting the microparticles-resin film with an organic acid, water, an alkaline solution or an inorganic acid other than hydrofluoric acid to dissolve and remove the microparticles, or heating the microparticles-resin film to remove the microparticles, to form pores which are in mutual communication and regularly arrayed in the resin matrix. The medium has a resin precursor for the resin matrix and surfaces of the microparticles are inactive against the medium.
摘要:
Provided is a separator which can make the electric field on the surface of a negative electrode for a metal secondary battery homogeneous to thereby prevent the formation of dendrites. A porous separator for metal secondary batteries, which has a polymer electrolyte layer formed on the surface layer of at least one main surface of a porous polyimide film. It is preferred that the polymer electrolyte layer is composed of both a polymer electrolyte material which is supported on at least one main surface of the porous polyimide film and a polymer electrolyte material which is supported in voids in a layered region that extends from the main surface.
摘要:
To provide: an electrolyte film having a practical film thickness, an excellent mechanical strength, and electrochemical characteristics; an electrolyte composition making it possible to obtain the electrolyte film; and a cell in which the electrolyte film is used. [Solution] An electrolyte composition characterized in comprising an electrolyte powder, a binder, and an ion-conductive material; the electrolyte powder being an oxide-based ceramic electrolyte powder; the binder being a polymer compound that is stable with respect to metal ions; the ion-conductive material being a solvated ion-conductive material or an ion-conductive solution having a metal ion-based compound. An electrolyte film characterized in being provided with an electrolyte powder and a composite material in which a binder and an ion-conductive material are made into a composite.
摘要:
(Problem to be Solved) The present application is to provide: a positive electrode material for producing a lithium-sulfur solid-state battery that does not experience degradation of battery performance from charging/discharging cycling, does not present the fire risk of liquid electrolytes, and thereby makes battery performance compatible with safety; an all-solid-state lithium-sulfur battery that uses the positive electrode material; and a production method.(Means for Solution) The present application relate to a lithium-sulfur solid-state battery positive electrode material that contains: sulfur; a conductive material; a binder; and an ionic liquid or a solvate ionic liquid, and an all-solid-state lithium-sulfur battery that includes: a positive electrode that comprises the positive electrode material; a negative electrode; and an oxide solid electrolyte. The positive electrode material is manufactured by means of a method wherein a slurry obtained by adding an organic solvent to the sulfur, the conductive material, the binder, and the ionic liquid or solvate ionic liquid is applied to one surface of an oxide solid electrolyte formation body and dried to remove the organic solvent.
摘要:
(Problem to be Solved)The present application is to provide an all-solid-state lithium-sulfur battery that experiences little reduction in battery performance even after repeated charging/discharging cycling, does not generate toxic gas when damaged, and does not require addition of equipment or the like for management of moisture or oxygen concentration; and a production method for the all-solid-state lithium-sulfur battery.(Means for Solution)The present invention uses a positive electrode that contains sulfur and a conductive material, a negative electrode that contains lithium metal, and, as an electrolyte layer that is interposed between the positive electrode and the negative electrode, an oxide solid electrolyte to achieve a high-performance all-solid-state lithium-sulfur battery. According to the present invention, after a positive electrode slurry that contains sulfur is applied to a positive electrode side of an oxide solid electrolyte formation body and dried to form a positive electrode, the oxide solid electrolyte molded body is mounted upon a lithium foil that will become a negative electrode and adhered to the lithium foil. Said process allows for efficient assembly of a battery cell that is configured to have an oxide solid electrolyte interposed between a positive electrode and a negative electrode.
摘要:
A positive-electrode active material for a non-aqueous electrolyte rechargeable battery includes a core portion and a shell portion. The core portion contains an inorganic oxide with a polyanionic structure. The shell portion coats the core portion. The shell portion contains a carbon and an inorganic accelerator that accelerates generation of the shell portion by the carbon. The content of the inorganic accelerator is 0.2 mass % or more of the inorganic oxide when the mass of the inorganic oxide is defined as 100%.
摘要:
(Problem to be Solved)The present application is to provide an all-solid-state lithium-sulfur battery that experiences little reduction in battery performance even after repeated charging/discharging cycling, does not generate toxic gas when damaged, and does not require addition of equipment or the like for management of moisture or oxygen concentration; and a production method for the all-solid-state lithium-sulfur battery.(Means for Solution)The present invention uses a positive electrode that contains sulfur and a conductive material, a negative electrode that contains lithium metal, and, as an electrolyte layer that is interposed between the positive electrode and the negative electrode, an oxide solid electrolyte to achieve a high-performance all-solid-state lithium-sulfur battery. According to the present invention, after a positive electrode slurry that contains sulfur is applied to a positive electrode side of an oxide solid electrolyte formation body and dried to form a positive electrode, the oxide solid electrolyte molded body is mounted upon a lithium foil that will become a negative electrode and adhered to the lithium foil. Said process allows for efficient assembly of a battery cell that is configured to have an oxide solid electrolyte interposed between a positive electrode and a negative electrode.
摘要:
A method of manufacturing a multicomponent lithium phosphate compound particle with an olivine structure of formula LiyM11-ZM2ZPO4, M1 is Fe, Mn or Co; Y satisfies 0.9≦Y≦1.2; M2 is Mn, Co, Mg, Ti or Al; and Z satisfies 0
摘要:
(Problem to be Solved)The present application is to provide: a positive electrode material for producing a lithium-sulfur solid-state battery that does not experience degradation of battery performance from charging/discharging cycling, does not present the fire risk of liquid electrolytes, and thereby makes battery performance compatible with safety; an all-solid-state lithium-sulfur battery that uses the positive electrode material; and a production method.(Means for Solution)The present application relate to a lithium-sulfur solid-state battery positive electrode material that contains: sulfur; a conductive material; a binder; and an ionic liquid or a solvate ionic liquid, and an all-solid-state lithium-sulfur battery that includes: a positive electrode that comprises the positive electrode material; a negative electrode; and an oxide solid electrolyte. The positive electrode material is manufactured by means of a method wherein a slurry obtained by adding an organic solvent to the sulfur, the conductive material, the binder, and the ionic liquid or solvate ionic liquid is applied to one surface of an oxide solid electrolyte formation body and dried to remove the organic solvent.