Method for manufacturing secondary battery separator and method for manufacturing lithium secondary battery

    公开(公告)号:US10096809B2

    公开(公告)日:2018-10-09

    申请号:US14895389

    申请日:2014-06-04

    摘要: A method for manufacturing, a secondary battery separator including a porous resin film in which pores have three-dimensionally ordered structure and are in mutual communication via through-holes. The method includes: uniformly dispersing spherical microparticles having narrow particle size distribution in a dispersion medium to prepare a microparticles-dispersed slurry; drying slurry to obtain a spherical microparticles-dispersed film; heat-treating the film to form a microparticles-resin film in which the microparticles are regularly arrayed in three-dimensions in a resin matrix; and contacting the microparticles-resin film with an organic acid, water, an alkaline solution or an inorganic acid other than hydrofluoric acid to dissolve and remove the microparticles, or heating the microparticles-resin film to remove the microparticles, to form pores which are in mutual communication and regularly arrayed in the resin matrix. The medium has a resin precursor for the resin matrix and surfaces of the microparticles are inactive against the medium.

    ELECTROLYTE COMPOSITION, ELECTROLYTE FILM, AND BATTERY

    公开(公告)号:US20210151788A1

    公开(公告)日:2021-05-20

    申请号:US16632726

    申请日:2018-07-24

    摘要: To provide: an electrolyte film having a practical film thickness, an excellent mechanical strength, and electrochemical characteristics; an electrolyte composition making it possible to obtain the electrolyte film; and a cell in which the electrolyte film is used. [Solution] An electrolyte composition characterized in comprising an electrolyte powder, a binder, and an ion-conductive material; the electrolyte powder being an oxide-based ceramic electrolyte powder; the binder being a polymer compound that is stable with respect to metal ions; the ion-conductive material being a solvated ion-conductive material or an ion-conductive solution having a metal ion-based compound. An electrolyte film characterized in being provided with an electrolyte powder and a composite material in which a binder and an ion-conductive material are made into a composite.

    ALL-SOLID-STATE LITHIUM-SULFUR BATTERY AND PRODUCTION METHOD FOR SAME

    公开(公告)号:US20190273282A1

    公开(公告)日:2019-09-05

    申请号:US16082407

    申请日:2017-03-09

    摘要: (Problem to be Solved)The present application is to provide an all-solid-state lithium-sulfur battery that experiences little reduction in battery performance even after repeated charging/discharging cycling, does not generate toxic gas when damaged, and does not require addition of equipment or the like for management of moisture or oxygen concentration; and a production method for the all-solid-state lithium-sulfur battery.(Means for Solution)The present invention uses a positive electrode that contains sulfur and a conductive material, a negative electrode that contains lithium metal, and, as an electrolyte layer that is interposed between the positive electrode and the negative electrode, an oxide solid electrolyte to achieve a high-performance all-solid-state lithium-sulfur battery. According to the present invention, after a positive electrode slurry that contains sulfur is applied to a positive electrode side of an oxide solid electrolyte formation body and dried to form a positive electrode, the oxide solid electrolyte molded body is mounted upon a lithium foil that will become a negative electrode and adhered to the lithium foil. Said process allows for efficient assembly of a battery cell that is configured to have an oxide solid electrolyte interposed between a positive electrode and a negative electrode.

    All-solid-state lithium-sulfur battery and production method for same

    公开(公告)号:US10862160B2

    公开(公告)日:2020-12-08

    申请号:US16082407

    申请日:2017-03-09

    摘要: (Problem to be Solved)The present application is to provide an all-solid-state lithium-sulfur battery that experiences little reduction in battery performance even after repeated charging/discharging cycling, does not generate toxic gas when damaged, and does not require addition of equipment or the like for management of moisture or oxygen concentration; and a production method for the all-solid-state lithium-sulfur battery.(Means for Solution)The present invention uses a positive electrode that contains sulfur and a conductive material, a negative electrode that contains lithium metal, and, as an electrolyte layer that is interposed between the positive electrode and the negative electrode, an oxide solid electrolyte to achieve a high-performance all-solid-state lithium-sulfur battery. According to the present invention, after a positive electrode slurry that contains sulfur is applied to a positive electrode side of an oxide solid electrolyte formation body and dried to form a positive electrode, the oxide solid electrolyte molded body is mounted upon a lithium foil that will become a negative electrode and adhered to the lithium foil. Said process allows for efficient assembly of a battery cell that is configured to have an oxide solid electrolyte interposed between a positive electrode and a negative electrode.