Abstract:
Providing a three-dimensional surveying device and method capable of stably acquiring three-dimensional data with high accuracy. The device includes a mobile body, a measurement target, a collimation distance measuring unit fixed to the mobile body, a scanner unit, and a control computation section. The scanner unit is provided integrally and rotatably with respect to the collimation distance measuring unit. The control computation section is configured to calculate a coordinate value of a measurement center of the collimation distance measuring unit based on a distance measured by the collimation distance measuring unit, a first horizontal and first vertical angle, and to calculate a coordinate value of a measurement target object based on the coordinate value of the measurement center, an external orientation element of the scanner unit with respect to the collimation distance measuring unit, a distance measured by the scanner unit and a second horizontal and second vertical angle.
Abstract:
A spatial light measuring system is disclosed, which is configured to store illuminance data acquired by measurement in a new state as initial data, to make the traveling vehicle run after acquiring the initial data, to save illuminance data acquired by the illuminance measuring instrument as daily management data, and to specify an illuminance measuring position and an image acquiring position based on the speed of the traveling vehicle and to use a correction coefficient due to a distance from the ground to an illuminance measuring instrument mounting position and a correction coefficient due to the speed of the traveling vehicle and is configured to correct daily management data into illuminance data on the ground based on both the correction coefficients and to judge the soundness of the illumination facility based on a comparison between the illuminance data as corrected, the initial data and based on the images as acquired.
Abstract:
The invention provides a spatial light measuring system, which comprises an illuminance measuring instrument for measuring an illuminance on the ground in a state where an illumination facility is new in a running direction of a traveling vehicle at predetermined intervals, the illuminance measuring instrument and an image pickup device which are mounted on the traveling vehicle for continuously acquiring images including an illumination facility at the predetermined time intervals, a speedmeter for detecting a speed of the traveling vehicle and an arithmetic device, wherein the arithmetic device is configured to store illuminance data acquired by the measurement in a new state as initial data, to make the traveling vehicle to run after acquiring the initial data, to save illuminance data acquired. by the illuminance measuring instrument as daily management data, and to specify an illuminance measuring position and an image acquiring position based on the speed of the traveling vehicle as detected by the speedmeter and the arithmetic device has a correction coefficient due to a distance from the ground to an illuminance measuring instrument mounting position and a correction coefficient due to the speed of the traveling vehicle and is configured to correct daily management data into illuminance data on the ground based on both the correction coefficients and to judge the soundness of the illumination facility based on a comparison between the illuminance data as corrected, the initial data and based on the images as acquired.