Abstract:
On the other hand, the possibility of estimating the dopant ratio of a metal element to each ceria crystalline particle using integral-width or half-width obtained by XRD was considered as follows: an XRD peak is shifted depending on the dopant ratio of La to ceria; when La increases, an XRD peak is shifted to a lower angle; in XRD performed on a raw material obtained by mixing ceria crystalline particles having different dopant ratio, peaks corresponding to the respective dopant ratio exist close to each other; as a result, a peak width is widened; accordingly, the dopant ratio of a metal element to each ceria crystalline particles are supposed to vary when integral-width and half-width obtained by XRD are large. Thus, it was revealed for the first time that integral-width and half-width obtained by XRD indicate variations in dopant ratio. It should be noted that from the direct proportional relationship between the dopant ratio x and the integral-width for dopant ratio ranging from 0.35 to 0.45, integral-widths obtained by XRD are derived to be 0.10 to 0.30 for dopant ratio ranging from 0.35 to 0.45, and half-widths are derived to be 0.10 to 0.30 similarly.
Abstract:
Disclosed is a durable solid oxide fuel cell that is less likely to have a problem of a conventional solid oxide fuel cell that an air electrode containing a peroviskite oxide, when exposed to a reducing atmosphere, is separated at the stop of operation, especially shutdown. The solid oxide fuel cell includes an air electrode that is obtained by firing a compact containing a perovskite oxide and sulfur element. The content of the sulfur element in the air electrode as fresh after firing or before the start of power generation is in the range of 50 ppm to 3,000 ppm. The separation of the air electrode is effectively suppressed at the shutdown operation.