Abstract:
A storage battery module rental system includes a storage battery module prepared in each providing point that is dispersedly distributed and that can be rented to a user, an acquisition unit configured to acquire individual information of a plurality of the users and module information from the storage battery module, the user being a rentee candidate of the storage battery module, a determining unit configured to determine an incentive given for renting the storage battery module based on the individual information and the module information in such a way that the incentive could differ for each user; and a notifying unit configured to notify the user of the incentive determined by the determining unit for each of the users.
Abstract:
An environment adjustment system includes an acquisition unit configured to acquire environmental information of an environment related to a user, a drafting unit configured to draft an action plan to recommend to the user based on the environmental information, a transmission unit configured to transmit the action plan to the user's terminal, and a confirming unit configured to confirm whether the user has performed the action plan. When the drafting unit drafts a new action plan for another user or for the user, it drafts the new action plan using a result of the confirmation by the confirming unit.
Abstract:
A traveling energy distribution system includes a plurality of supply facilities each of which is able to supply traveling energy to a vehicle, an information acquisition unit configured to acquire, from a vehicle, vehicle information relevant to an amount of traveling energy remaining in the vehicle and acquire, from each of the plurality of supply facilities, supply facility information relevant to an amount of traveling energy that can be supplied from that supply facility, and a determination unit configured to determine a transfer source supply facility and a transfer destination supply facility for traveling energy to be transferred from among the plurality of supply facilities and determine an amount of the traveling energy to be transferred based on the vehicle information and the supply facility information acquired by the information acquisition unit.
Abstract:
A deterioration diagnosis apparatus of a battery includes one or more processors. The one or more processors are configured to execute discharging of each of a plurality of cells included in an assembled battery while measuring a voltage of each of the cells, estimate a deterioration degree of each of the cells using voltage data indicating a transition of the voltage of each of the cells from a discharging start voltage to a predetermined discharging end voltage, and end the discharging when voltages of all the cells included in the assembled battery reach the predetermined discharging end voltage. The predetermined discharging end voltage is a cell voltage at which a change degree of the cell voltage per unit discharging amount starts to sharply rise while the cell voltage is dropping due to the discharging.
Abstract:
A caulking method includes: determining a caulking depth which becomes equal to or larger than a necessary release torque that has been set in advance, determining a stroke amount of a push-in part which becomes equal to or larger than the caulking depth that has been determined; determining the stroke amount of a drive unit which becomes equal to or larger than the stroke amount of the push-in part that has been determined, and controlling the drive unit at a target control stroke amount that is equal to or larger than the stroke amount of the drive unit that has been determined but is smaller than the stroke amount of the drive unit at which the caulk part is damaged.
Abstract:
A rotor core heating device (100) is configured to heat an inner peripheral side surface and an outer peripheral side surface of a rotor core (150) through induction heating. The rotor core has a hollow cylindrical shape. The rotor core heating device includes a first coil (110), a second coil (120) and a magnetic flux shielding jig (170). The first coil is disposed inside the rotor core and is configured to heat the inner peripheral side surface of the rotor core through induction heating. The second coil is disposed outside the rotor core and is configured to heat the outer peripheral side surface of the rotor core through induction heating. The magnetic flux shielding jig has a hollow cylindrical shape and is disposed opposite a first end surface of the rotor core with a gap provided between the first end surface and the magnetic flux shielding jig in an axial direction of the rotor core.