Abstract:
Provided is a laser welding inspection apparatus capable of improving the accuracy for determining the welding defect. The laser welding inspection apparatus includes a head which irradiates a welded portion of a workpiece with a laser beam for inspection, an optical receiver which receives a return light of the laser beam for inspection from the welded portion, an optical system which adjusts at least a focal diameter of the laser beam for inspection applied to the welded portion and a region where the return light from the welded portion is recognized, and a controller which controls the optical system and determines, based on intensity of the return light, whether a welding defect exists in the welded portion. The controller controls the optical system so that a diameter of the region is not more than 1.5 times as large as the focal diameter.
Abstract:
A welding laser beam (L1) is radiated along welding loci (C11, C12) set in workpieces (W1, W2), or an inspection laser beam (L5) is radiated along scanning loci (C51, C52) set in a molten pool (Y1) of the workpieces that are molten by radiation of the welding laser beam, a returned light beam (L2) including reflection light from the molten pool, vapor light caused due to melting and evaporation of the workpieces, and thermal radiation light emitted from the molten pool is received, and a welding state of a welded portion of the workpieces is inspected based on an intensity of a returned light beam received in a first region inside the molten pool which is relatively close to a given point and an intensity of a returned light beam received in a second region inside the molten pool which is relatively spaced from the given point.
Abstract:
Provided is a laser beam welding apparatus capable of correctly detecting the beginning and the end of one welding point even in remote laser beam welding. The laser beam welding apparatus includes a head which irradiates a workpiece with a laser beam, an optical receiver which receives a reflected light of the laser beam from the workpiece, and a controller. The optical receiver receives only a laser beam and a plasma of the reflected light. The controller determines that one welding point begins when a time during which intensity of the reflected light is larger than or equal to a second set-intensity is longer than or equal to a first set-time, and determines that the one welding point ends when a time during which the intensity of the reflected light is smaller than or equal to a first set-intensity is longer than or equal to a second set-time.
Abstract:
A differential hypoid gear, a pinion gear, and paired hypoid gears formed by a combination thereof are provided. The differential hypoid gear includes a ring-shaped main body and a tooth-forming surface, and has a chemical component composition including C: 0.15-0.30 mass %, Si: 0.55-1.00 mass %, Mn: 0.50-1.20 mass %, Cr: 0.50-1.50 mass %, Al: 0.020-0.080 mass %, B: 0.0005-0.0050 mass %, Ti: 0.01-0.08 mass %, N: 0.0020-0.0100 mass %, Mo: 0.25 mass % or less, and Nb: less than 0.10 mass %, the remainder being Fe and unavoidable impurities. The chemical component composition satisfies Formulae 1 and 2. The differential hypoid gear has a metallographic structure including mainly tempered martensite. A martensite ratio at an inside of a dedendum differs between an end portion of a tooth and a central portion of the tooth within a range of 15% or less. A core hardness of the dedendum at the central portion falls within 350-500 HV.
Abstract:
A welding laser beam (L1) is radiated along welding loci (C11, C12) set in workpieces (W1, W2), or an inspection laser beam (L5) is radiated along scanning loci (C51, C52) set in a molten pool (Y1) of the workpieces (W1, W2) that are molten by radiation of the welding laser beam (L1), a returned light beam (L2) including reflection light from the molten pool (Y1) of the workpieces, vapor light caused due to melting and evaporation of the workpieces, and thermal radiation light emitted from the molten pool (Y1) of the workpieces is received, and a welding state of a welded portion of the workpieces is inspected based on an intensity change of the returned light beam (L2) thus received.
Abstract:
A welded portion inspection method accurately identifies emitted light from a molten portion during inspection laser light irradiation, enabling reliable inspection. When transitioning from welding laser light irradiation to inspection laser light irradiation, the welding laser light irradiation is interrupted and then the welding laser light is switched to the inspection laser light. In inspecting a welded portion, two points in time at which the emitted light intensity is equal to or less than a certain threshold value are extracted from an intensity waveform of the emitted light as an inspection start point in time and an inspection end point in time. The interval between the inspection start and end points is estimated as being a irradiation period of the inspection laser light. The welded state is inspected based on the intensity waveform of the emitted light in the irradiation period.