Abstract:
There is provided a surface modification method for a light metal casting that enables, with Friction Stir Processing, to further refine a surface at a portion at which the strength is especially required. A surface modification method for a light metal casting with Friction Stir Processing in which a rotating shaft and a rotator are rotated and fed while the rotating shaft and the rotator are being pressed against a surface of a casting to modify the surface of the casting, the method includes feeding the rotating shaft and the rotator while rotating the rotating shaft and the rotator in a manner such that a side at which a rotating direction of the rotating shaft and the rotator coincides with a feeding direction is positioned at a portion at which increase in the strength is desired with modification of the light metal casting.
Abstract:
A method of welding laminated metal foils (LMF) by projecting a laser beam onto LMF sandwiched between an upper metal plate and a lower metal plate from a side of the upper metal plate and laser-welding the LMF to the upper metal plate and the lower metal plate. The method includes: forming a hole in an upper surface of the upper metal plate and forming a chamfered part so that a diameter of the hole expands toward the upper surface before the laser welding; and in the laser welding, projecting the laser beam for heat conduction welding onto the chamfered part of the upper metal plate to form a molten pool; and projecting the laser beam in a circle to agitate the molten pool and grow the molten pool in a laminating direction of the LMF so that the molten pool reaches the lower metal plate.
Abstract:
A welding laser beam (L1) is radiated along welding loci (C11, C12) set in workpieces (W1, W2), or an inspection laser beam (L5) is radiated along scanning loci (C51, C52) set in a molten pool (Y1) of the workpieces that are molten by radiation of the welding laser beam, a returned light beam (L2) including reflection light from the molten pool, vapor light caused due to melting and evaporation of the workpieces, and thermal radiation light emitted from the molten pool is received, and a welding state of a welded portion of the workpieces is inspected based on an intensity of a returned light beam received in a first region inside the molten pool which is relatively close to a given point and an intensity of a returned light beam received in a second region inside the molten pool which is relatively spaced from the given point.
Abstract:
A bridge member is installed in an opening of a water jacket, and a probe of a friction stir welding tool, which rotates about an axis parallel to a cylinder axis, is pressed against a central part of an upper surface of the bridge member. The probe is kept pressed against the central part of the upper surface for a predetermined time to cause side surfaces of the bridge member to expand and come into contact with both a cylinder wall and an outer wall. The probe is moved from the central part of the upper surface to the outer wall, or the cylinder wall, while the probe is kept pressed against the upper surface, thereby friction-stir welding the outer wall, or the cylinder wall, with the bridge member to each other, and after that, the probe is removed off the top deck.
Abstract:
Provided is a method of welding laminated metal foils that can prevent blowholes and spatter from being formed. It is a method of welding laminated metal foils sandwiched between a pair of metal plates to the pair of metal plates. The method of welding laminated metal foils sandwiched between a pair of metal plates to the pair of metal plates includes locally pressing and crimping the laminated metal foils sandwiched between the pair of metal plates at a welding point in a laminating direction, and welding the crimped pair of metal plates and laminated metal foils at the welding point.
Abstract:
A method of determining a quality of a cladding layer according to one aspect of the present invention is a method of determining a quality of a cladding layer 16 formed by irradiating a laser beam 30 while a metallic powder 26 is being supplied, the method including: a process of capturing an image of a melt pool 31 and an area around thereof while the cladding layer 16 is being formed; a process of measuring the sizes and the number of ball-shaped metallic powder aggregates absorbed in the melt pool 31 from the image that has been captured; and a process of determining the quality of the cladding layer 16 based on the sizes and the number that have been measured.
Abstract:
Provided is a laser welding apparatus that performs welding by irradiating a laser beam onto a welded part, the laser welding apparatus including: a shielding gas supply unit that supplies a shielding gas to the welded part; a gas feed rate controlling unit that controls a flow rate of the shielding gas; a light intensity measurement unit that measures a light intensity of plasma light emitted from the welded part; and a rate-of-change calculation unit that calculates a rate of change of the light intensity measured by the light intensity measurement unit. The gas feed rate controlling unit controls, according to the calculated rate of change of the light intensity, the flow rate of the shielding gas supplied to the welded part.
Abstract:
A welding laser beam (L1) is radiated along welding loci (C11, C12) set in workpieces (W1, W2), or an inspection laser beam (L5) is radiated along scanning loci (C51, C52) set in a molten pool (Y1) of the workpieces (W1, W2) that are molten by radiation of the welding laser beam (L1), a returned light beam (L2) including reflection light from the molten pool (Y1) of the workpieces, vapor light caused due to melting and evaporation of the workpieces, and thermal radiation light emitted from the molten pool (Y1) of the workpieces is received, and a welding state of a welded portion of the workpieces is inspected based on an intensity change of the returned light beam (L2) thus received.
Abstract:
A joining device comprises a die and driving means. A first concave portion is recessed in a substantially cylindrical shape in a driving direction on the die, and a second concave portion is recessed in the driving direction in a central portion on a bottom face of the first concave portion. A portion on an external side of the second concave portion on the bottom face of the first concave portion forms a terrace portion that is shallower than the second concave portion, and a diameter of the foot portion of the self-piercing rivet corresponds to a diameter of the terrace portion. In driving the foot portion of the self-piercing rivet toward the terrace portion of the first concave portion, the foot portion of the self-piercing rivet is spread outward by the terrace portion and a part of the members to be joined runs into the second concave portion.
Abstract:
A torsional vibration reduction device provided inside a torque converter includes rolling elements, a plate, and a cover. The plate includes rolling chambers housing the rolling elements. The cover encloses and shields the rolling elements and the plate from a working fluid surrounding the torsional vibration reduction device inside the torque converter. The cover includes first and second covers that are joined together with the plate held between the first and second covers. The first and second covers contact the plate in an axial direction of the torque converter at locations that are, with respect to an axis of the torque converter, on an inner peripheral side and on an outer peripheral side of the rolling chambers. Surfaces of the first and second covers are joined to the plate at least at part of the locations where the first and second covers contact the plate.