Abstract:
An electrical connector includes a housing, a signal contact, and a ground shield. The housing includes a base having a front side and an opposite rear side. The signal contact is received in the base and has a mating segment that extends forward of the front side. The ground shield is received in the base and extends forward of the front side. The ground shield surrounds the signal contact on at least one side thereof. The ground shield includes a deflectable spring tab extending from an inner surface of the ground shield towards the signal contact without engaging the signal contact. The spring tab is positioned forward of the front side of the base. The spring tab is configured to be deflected outward by a mating connector in a direction away from the signal contact during a mating operation.
Abstract:
An electrical power contact includes a mating segment having a mating interface at which the electrical power contact is configured to mate with a mating contact. The mating segment includes an electrically conductive base layer, and an electrically conductive outer layer that includes the mating interface. The mating segment also includes a circuit protection layer that extends between the base layer and the outer layer. The circuit protection layer provides an electrical pathway between the base layer and the outer layer. The circuit protection layer includes a selectively conductive material that is configured to open the electrical pathway between the base layer and the outer layer when an electrical current above a predetermined threshold is passed through the circuit protection layer.
Abstract:
Power connector assembly including a power contact having a base portion and opposing contact springs that project from the base portion along a mating axis. The contact springs oppose each other across a receiving space and are configured to engage a common conductive component that is inserted into the receiving space in a direction along the mating axis. The power connector assembly also includes an alignment body that has a support plate and a coupling member that engages and holds the power contact. The support plate includes an elongated slot and a contact window. The coupling member holds the power contact in a designated position relative to the support plate, wherein the base portion extends into the contact window when in the designated position and the contact springs extend along and substantially parallel to the elongated slot when in the designated position.
Abstract:
An electrical power contact includes a mating segment having a mating interface at which the electrical power contact is configured to mate with a mating contact. The mating segment includes an electrically conductive base layer, and an electrically conductive outer layer that includes the mating interface. The mating segment also includes a circuit protection layer that extends between the base layer and the outer layer. The circuit protection layer provides an electrical pathway between the base layer and the outer layer. The circuit protection layer includes a selectively conductive material that is configured to open the electrical pathway between the base layer and the outer layer when an electrical current above a predetermined threshold is passed through the circuit protection layer.
Abstract:
An electrical system may include a busbar assembly and a connector assembly. The busbar assembly may include first and second busbars. A first contact tab extends from the first busbar. A second contact tab extends from the second busbar. The first and second contact tabs include first and second interface ends, respectively, within a common plane. The connector assembly includes a housing that retains first and second electrical contacts. The first electrical contact includes a first contact terminal and the second electrical contact includes a second contact terminal. The first contact terminal defines a first interfacing space and the second contact terminal defines a second interfacing space. The first and second interfacing spaces are aligned with one another. The first and second interface ends are configured to mate with the first and second contact terminals within the first and second interfacing spaces, respectively.
Abstract:
An electrical system may include a busbar assembly and a connector assembly. The busbar assembly may include first and second busbars. A first contact tab extends from the first busbar. A second contact tab extends from the second busbar. The first and second contact tabs include first and second interface ends, respectively, within a common plane. The connector assembly includes a housing that retains first and second electrical contacts. The first electrical contact includes a first contact terminal and the second electrical contact includes a second contact terminal. The first contact terminal defines a first interfacing space and the second contact terminal defines a second interfacing space. The first and second interfacing spaces are aligned with one another. The first and second interface ends are configured to mate with the first and second contact terminals within the first and second interfacing spaces, respectively.
Abstract:
Power connector assembly including a power contact having a base portion and opposing contact springs that project from the base portion along a mating axis. The contact springs oppose each other across a receiving space and are configured to engage a common conductive component that is inserted into the receiving space in a direction along the mating axis. The power connector assembly also includes an alignment body that has a support plate and a coupling member that engages and holds the power contact. The support plate includes an elongated slot and a contact window. The coupling member holds the power contact in a designated position relative to the support plate, wherein the base portion extends into the contact window when in the designated position and the contact springs extend along and substantially parallel to the elongated slot when in the designated position.