摘要:
This invention improves the arithmetic precision even for image data in which each component of one pixel is expressed by 8 bits by fully utilizing the 12-bit data processing performance of an Extended sequential DCT-based JPEG decoding/encoding apparatus, so that image deterioration due to JPEG compression which is observed in an image portion where the gray levels change slowly, i.e., a pseudo edge can be hardly generated, thus improving the image quality. To this end, a header interpreter interprets the header of encoded data to be decoded to determine if the encoded data is that of 8-bit image data per component or that of 12-bit image data per component, and outputs the result to a bit shift unit, rounding processor, and inverse quantizer. Upon reception of a message indicating that the encoded data is that of 8-bit color image data per component, the bit shift unit stores a result obtained by shifting a quantization step of a quantization table stored in the header by 4 bits in the MSB direction in a quantization table storage unit. The inverse quantizer multiplies a decoded value decoded by a Huffman decoder by the quantization step stored in the quantization table storage unit to generate 12-bit DCT coefficients. The DCT coefficients are processed by an IDCT unit to obtain image data, and the image data is rounded to 8 bits again, thus outputting image data as a decoded result.
摘要:
This invention generates target encoded data by suppressing an arithmetic precision drop by executing processes such as orthogonal transformation and the like using the number of bits of an input image in place of reducing the number of bits at the time of input upon encoding an image. Upon generating baseline JPEG encoded data, a quantization table for an 8-bit image is stored in a quantization table storage unit. When an interpreter outputs information indicating that each color component per pixel of input image data is 16 bits, a bit shift unit multiplies the quantization table stored in the quantization table storage unit by the 8th power of 2 or {8th power of 2+1}. A quantizer quantizes coefficients output from a DCT unit on the basis of the quantization table stored in the quantization table storage unit, and a Huffman encoder encodes the quantization result to Huffman codes. A header is created by setting information indicating baseline JPEG and the quantization table stored in the quantization table storage unit, thus generating encoded data.
摘要:
This invention improves the arithmetic precision even for image data in which each component of one pixel is expressed by 8 bits by fully utilizing the 12-bit data processing performance of an Extended sequential DCT-based JPEG decoding/encoding apparatus, so that image deterioration due to JPEG compression which is observed in an image portion where the gray levels change slowly, i.e., a pseudo edge can be hardly generated, thus improving the image quality. To this end, a header interpreter interprets the header of encoded data to be decoded to determine if the encoded data is that of 8-bit image data per component or that of 12-bit image data per component, and outputs the result to a bit shift unit, rounding processor, and inverse quantizer. Upon reception of a message indicating that the encoded data is that of 8-bit color image data per component, the bit shift unit stores a result obtained by shifting a quantization step of a quantization table stored in the header by 4 bits in the MSB direction in a quantization table storage unit. The inverse quantizer multiplies a decoded value decoded by a Huffman decoder by the quantization step stored in the quantization table storage unit to generate 12-bit DCT coefficients. The DCT coefficients are processed by an IDCT unit to obtain image data, and the image data is rounded to 8 bits again, thus outputting image data as a decoded result.
摘要:
This invention provides a lossless 4-point Hadamard transform circuit which can minimize the number of times of addition/subtraction calculations, and reduce the number of times of round processing required to convert data including a fractional part into an integer. To this end, a DC coefficient generating unit summates four input data, and shifts the summation result 1 bit to the right to halve the summation result and to round the halved result by truncating a fractional part of the result. This 1-bit shift right result is output as a DC coefficient. An intermediate data generating unit generates, as intermediate value, a difference value between one input data of the four input data and the DC coefficient obtained by the DC coefficient generating unit. An AC coefficient generating unit generates three AC coefficients by adding the intermediate data generated by the intermediate data generating unit to other three input data.
摘要:
This invention provides a lossless 4-point Hadamard transform circuit which can minimize the number of times of addition/subtraction calculations, and reduce the number of times of round processing required to convert data including a fractional part into an integer. To this end, a DC coefficient generating unit summates four input data, and shifts the summation result 1 bit to the right to halve the summation result and to round the halved result by truncating a fractional part of the result. This 1-bit shift right result is output as a DC coefficient. An intermediate data generating unit generates, as intermediate value, a difference value between one input data of the four input data and the DC coefficient obtained by the DC coefficient generating unit. An AC coefficient generating unit generates three AC coefficients by adding the intermediate data generated by the intermediate data generating unit to other three input data.
摘要:
This invention allows Huffman encoding using a common Huffman table according to basic quantization values Qi,j even when image data expressed by n bits falling within the range from L to K is JPEG-coded, and can suppress the Huffman table size from increasing. To this end, a basic quantization table storage unit stores quantization step values Q0,0 to Q7,7 used in baseline JPEG coding. A minimum quantization step generator outputs a minimum quantization step value Qn—min to a comparator/selector according to the number n of bits of each color component of image data to be coded. The comparator/selector compares the quantization step values Q0,0 to Q7,7 with Qn—min and selects larger ones, and outputs the comparison results to a quantizer as Q′i,j. The quantizer stores Q′i,j in a quantization table storage unit and quantizes orthogonal transformation coefficients output from a DCT transformer.
摘要:
A bumper is provided with to-be-engaged projections, a radiator grille is provided with engaging projections. The radiator grille is allowed to move and approach bumper rearward of a vehicle. According to this configuration, the engaging projections engage the to-be-engaged projections and they are engaged with and fixed to each other. At this time, a bumper-side seizing unit of the bumper is fitted into a grille-side seizing unit of the radiator grille, thereby limiting the vertical direction. In an engaged state between the engaging projections and the to-be-engaged projections, an inclining surface of one of the engaging projections comes into contact with a rearward inclining surface of the one of the to-be-engaged projections, and an inclining surface of the other engaging projection is separated from a rearward inclining surface of the other to-be-engaged projection.
摘要:
An image processing apparatus includes a feedback unit configured to perform first nonlinear conversion of a signal obtained by subtracting a value of a subtraction image signal from that of a current-frame image signal, and to obtain the next subtraction signal by subtracting a signal obtained by performing the first nonlinearly conversion from the current-frame image signal, and a noise reduction unit configured to perform second nonlinear conversion of a signal obtained by subtracting a value of the subtraction image signal from that of the current-frame image signal, and to obtain an output image signal by subtracting a signal obtained by performing the second nonlinear from the current-frame image signal.
摘要:
This invention allows Huffman encoding using a common Huffman table according to basic quantization values Qi,j even when image data expressed by n bits falling within the range from L to K is JPEG-coded, and can suppress the Huffman table size from increasing. To this end, a basic quantization table storage unit stores quantization step values Q0,0 to Q7,7 used in baseline JPEG coding. A minimum quantization step generator outputs a minimum quantization step value Qn—min to a comparator/selector according to the number n of bits of each color component of image data to be coded. The comparator/selector compares the quantization step values Q0,0 to Q7,7 with Qn—min and selects larger ones, and outputs the comparison results to a quantizer as Q′i,j. The quantizer stores Q′i,j in a quantization table storage unit and quantizes orthogonal transformation coefficients output from a DCT transformer.
摘要:
A two-dimensional wavelet transform processing apparatus, more effectively utilizing hardware resource, is realized with reduced hardware construction. For this purpose, the filter processing apparatus has a vertical DWT processor (901) for performing filter processing on image data and outputting 2 types of data obtained by the processing as 1 pair of data, a rotation unit (903) for rearranging the data outputted from the vertical DWT processor by rotating the data by 90° by 2 pairs and outputting the data, and a horizontal DWT processor (905) for performing filter processing on the image data rearranged by the rotation unit and outputting 2 types of data obtained by the processing as 1 pair of data.