Abstract:
A semiconductor structure is disclosed, including a first gate and a second gate aligned with the first gate, a first gate via, a second gate via, multiple conductive segments, and a first conductive line. The first gate via is disposed on the first gate and the second gate via is disposed on the second gate. The first and second gates are configured to be a terminal of a first logic circuit, which is coupled to a terminal of a second logic circuit. The first conductive line is coupled to the first gate through a first connection via and the first gate via and is electrically coupled to the second gate through a second connection via and the second gate via.
Abstract:
An IC structure includes first and second cell rows extending in a first direction. The first cell row includes first cells each including one or more first fins having first source/drain regions of a first conductivity type and one or more second fins having second source/drain regions of a second conductivity type opposite the first conductivity type. The second cell row includes second cells each including one or more third fins having third source/drain regions of the first conductivity type and one or more fourth fins having fourth source/drain regions of the second conductivity type. The first cells have a same first number of the one or more first fins, and the second cells have a same second number of the one or more third fins less than the first number of the one or more first fins.
Abstract:
A method is disclosed, including the following operations: arranging a first gate structure extending continuously above a first active region and a second active region of a substrate; arranging a first separation spacer disposed on the first gate structure to isolate an electronic signal transmitted through a first gate via and a second gate via that are disposed on the first gate structure, in which the first gate via and the second gate via are arranged above the first active region and the second active region respectively; and arranging a first local interconnect between the first active region and the second active region, in which the first local interconnect is electrically coupled to a first contact disposed on the first active region and a second contact disposed on the second active region.
Abstract:
An integrated circuit structure includes: a first plurality of cell rows extending in a first direction, each of which has a first row height and comprises a plurality of first cells disposed therein; and a second plurality of cell rows extending in the first direction, each of which has a second row height different from the first row height and comprises a plurality of second cells disposed therein. The plurality of first cells comprises a first plurality of active regions each of which continuously extends across the plurality of first cells in the first direction, and wherein the plurality of second cells comprises a second plurality of active regions each of which continuously extends across the plurality of second cells in the first direction.
Abstract:
Semiconductor structures are provided. The semiconductor structure includes a plurality of gate structures extending in a first direction formed over a substrate. The gate structures follow the following equation: 0.2 P gate min + 0.35 L gate min + 0.3 H gate min - 20 0.2 L gate min + 0.8 H gate min - 5 × 0.3 L gate min + 0.3 H gate min + 5 38 ≤ 0.32 Pgate min is the minimum value among gate pitches of the gate structures, and Lgate min is the minimum value among gate lengths of the gate structures. Hgate min is the minimum value among gate heights of the gate structures.
Abstract:
A method includes: disposing a first conductive segment; disposing a first conductive via above the first conductive segment; disposing a first conductive line above the first conductive via; and disposing a second conductive segment electrically coupled to the first conductive line through a third conductive segment, the first conductive segment, and the first conductive via.
Abstract:
A semiconductor structure is disclosed that includes a first conductive line, a first conductive segment, a second conductive segment, and a gate. The first conductive segment is electrically coupled to the first conductive line through a conductive via. The second conductive segment is configured to electrically couple the first conductive segment with a third conductive segment disposed over an active area. The gate is disposed under the second conductive segment and disposed between first conductive segment and the third conductive segment. The first conductive line and the second conductive segment are disposed at two sides of the conductive via respectively. A length of the first conductive segment is greater than a length of the third conductive segment.
Abstract:
A semiconductor device includes an active region comprising a source/drain region and a plurality of poly strips spaced apart and arranged along a first direction crossing over the active region. The first direction is substantially perpendicular to a lengthwise direction of the active region. A first metal pattern is disposed on the poly strips and arranged along the first direction. A plurality of first interconnect plugs is interposed in between the poly strips and the first metal pattern and in between the active region and the first metal pattern. A position of the first interconnect plugs being variable along the first direction.
Abstract:
A semiconductor structure is disclosed that includes a semiconductor structure includes an active area, a first conductive line, a conductive via, a first conductive metal segment coupled to the conductive line through the conductive via, a second conductive metal segment disposed over the active area, and a local conductive segment configured to couple the first conductive metal segment and the second conductive metal segment.
Abstract:
A semiconductor structure includes a first conductive line, a first conductive segment, a second conductive segment, and a third conductive segment. The first conductive segment is electrically coupled to the first conductive line. The second conductive segment is electrically coupled the first conductive segment. The second conductive segment is disposed between the first conductive segment and the third conductive segment. A top surface of the first conductive segment is aligned with a top surface of the second conductive segment in a same layer.