摘要:
An index detection unit (2030) detects indices allocated or set on an object from a sensed image. An evaluation amount calculation unit (2060) calculates evaluation amounts of the indices using two-dimensional geometric features of the indices on the image and/or three-dimensional geometric features that represent relationships between an image sensing device (2010) and the indices on a three-dimensional space. A reliability calculation unit (2070) calculates reliabilities of the indices according to the calculated evaluation amounts of the indices. A position and orientation calculation unit (2080) calculates the position and orientation of the object or the image sensing device (2010) using at least the calculated reliabilities of the indices and information associated with the image coordinates of the detected indices.
摘要:
This invention relates to a position/orientation measurement apparatus which can measure a position and orientation while achieving both high stability and precision. An image including indices laid out on a space is captured, and the indices are detected from the captured image. When a plurality of indices are detected, their distribution range is calculated, and an algorithm to be applied in position/orientation calculations is selected according to the size of the range (S3033, S3050, S3060). For example, when the indices are distributed over a sufficiently broad range, six parameters of the position and orientation of an image capture device are calculated as unknowns (S3070). As the distribution range of the indices becomes smaller, the degrees of freedom of unknown parameters to be calculated are reduced (S3035, S3025).
摘要:
A position and orientation measurement apparatus has a subjective-view-index detection unit which detects indices on a physical space from an image captured by a subjective-view camera, an additional subjective-view-index detection unit which detects indices on the physical space from an image captured by an additional subjective-view camera having a spatial resolution different from the subjective-view camera, and a position and orientation estimation unit which calculates the position and orientation of the subjective-view camera using information associated with the image coordinates of the detected indices.
摘要:
In an information processing method, an orientation sensor is mounted on a targeted object to be measured, and bird's-eye view cameras for capturing images of the targeted object are fixedly installed. From the images captured by the bird's-eye view cameras, an index detecting unit detects indices mounted on the orientation sensor. A measured orientation value from the orientation sensor is input to an orientation predicting unit, and the orientation predicting unit predicts the present orientation of the targeted object based on an azimuth-drift-error correction value. A position-orientation calculating unit uses the image coordinates of the detected indices to calculate the position of the imaging device and an update value of the azimuth-drift-error correction value, which are unknown parameters. From the obtained parameters, the position-orientation calculating unit finds and outputs the position and orientation of the targeted object.
摘要:
In an information processing method, an orientation sensor is mounted on a targeted object to be measured, and bird's-eye view cameras for capturing images of the targeted object are fixedly installed. From the images captured by the bird's-eye view cameras, an index detecting unit detects indices mounted on the orientation sensor. A measured orientation value from the orientation sensor is input to an orientation predicting unit, and the orientation predicting unit predicts the present orientation of the targeted object based on an azimuth-drift-error correction value. A position-orientation calculating unit uses the image coordinates of the detected indices to calculate the position of the imaging device and an update value of the azimuth-drift-error correction value, which are unknown parameters. From the obtained parameters, the position-orientation calculating unit finds and outputs the position and orientation of the targeted object.
摘要:
This invention relates to a position/orientation measurement apparatus which can measure a position and orientation while achieving both high stability and precision. An image including indices laid out on a space is captured, and the indices are detected from the captured image. When a plurality of indices are detected, their distribution range is calculated, and an algorithm to be applied in position/orientation calculations is selected according to the size of the range (S3033, S3050, S3060). For example, when the indices are distributed over a sufficiently broad range, six parameters of the position and orientation of an image capture device are calculated as unknowns (S3070). As the distribution range of the indices becomes smaller, the degrees of freedom of unknown parameters to be calculated are reduced (S3035, S3025).
摘要:
An index detection unit (2030) detects indices allocated or set on an object from a sensed image. An evaluation amount calculation unit (2060) calculates evaluation amounts of the indices using two-dimensional geometric features of the indices on the image and/or three-dimensional geometric features that represent relationships between an image sensing device (2010) and the indices on a three-dimensional space. A reliability calculation unit (2070) calculates reliabilities of the indices according to the calculated evaluation amounts of the indices. A position and orientation calculation unit (2080) calculates the position and orientation of the object or the image sensing device (2010) using at least the calculated reliabilities of the indices and information associated with the image coordinates of the detected indices.
摘要:
A position and orientation measurement apparatus has a subjective-view-index detection unit which detects indices on a physical space from an image captured by a subjective-view camera, an additional subjective-view-index detection unit which detects indices on the physical space from an image captured by an additional subjective-view camera having a spatial resolution different from the subjective-view camera, and a position and orientation estimation unit which calculates the position and orientation of the subjective-view camera using information associated with the image coordinates of the detected indices.
摘要:
An image processing apparatus includes an image acquisition unit configured to acquire a tomographic image of an object, a layer detection unit configured to detect a layer that constitutes the object from the tomographic image acquired by the image acquisition unit, and a normal structure estimation unit configured to estimate a normal structure of the layer based on the layer detected by the layer detection unit and a feature that is modified by a lesion of the layer.
摘要:
The orientation of each index is estimated from a sensed image, and the index detected from the image is identified based on the orientation of an image sensing device and that of the index estimated from known coordinate information of the index. In this way, indices which are located at nearby positions but have different orientations are never misidentified, and can be stably identified. Indices can be stably identified from the sensed image in which indices located in the physical space appear.