Abstract:
It is an object to provide a new compound which is suitable for a material of an electron-transporting layer of a light-emitting element. In particular, it is an object to provide a compound which can be used for forming a light-emitting element capable of emitting light at a low drive voltage. An acenaphthopyridine derivative represented by the following general formula (G1) is provided. In the formula, Het represents a pyridyl group or a quinolyl group.
Abstract:
An object of the invention is to provide a composite material with which a light emitting element can be manufactured to have superior heat resistance, and another is to have durability high enough to be driven stably for a long time. Another object is to provide a composite material with which a light emitting element can be manufactured to achieve both objects. Still another object is to provide a composite material with which a light emitting element can be manufactured to achieve the above objects and to have little increase in power consumption. One feature of a composite material of the invention which can achieve the above objects is to comprise an organic-inorganic hybrid material in which an organic group is covalently bonded to silicon in a skeleton composed of siloxane bonds, and a material which is capable of accepting or donating electrons from or to the organic group.
Abstract:
An acenaphthoquinoxaline derivative represented by a general formula (G1) is provided. The acenaphthoquinoxaline derivative represented by the general formula (G1) easily receives electrons and has an electron-transporting property. Therefore, the acenaphthoquinoxaline derivative can be suitably used for a light-emitting element.
Abstract:
An object of the invention is to provide a composite material with which a light emitting element can be manufactured to have superior heat resistance, and another is to have durability high enough to be driven stably for a long time. Another object is to provide a composite material with which a light emitting element can be manufactured to achieve both objects. Still another object is to provide a composite material with which a light emitting element can be manufactured to achieve the above objects and to have little increase in power consumption. One feature of a composite material of the invention which can achieve the above objects is to comprise an organic-inorganic hybrid material in which an organic group is covalently bonded to silicon in a skeleton composed of siloxane bonds, and a material which is capable of accepting or donating electrons from or to the organic group.
Abstract:
A novel electroluminescent polymer is represented by the following formula. A film of the polymer represented by the following formula can be formed by electrolytic polymerization, and farther emits light in a different color by an electric field when a substituent thereof is changed. Therefore, a light-emitting device that is capable of multicolor displaying can be easily obtained.
Abstract:
An electroluminescent element which is superior in luminescence properties and lifetime can be provided by forming a thin film with high controllability according to the invention. An electroluminescent layer is formed over a first electrode by applying a current density of from 0.4 to 1.5 mA/cm2 for from 0.8 to 3.0 seconds to a first electrode of the electroluminescent element in accordance with the fact that an electrolytic polymerization film can be formed over the surface of the electrode uniformly by keeping a current density and time for applying the current to the electrode within a predetermined range during electrolytic polymerization especially when the electrolytic polymerization film is required to be a thin film.
Abstract translation:可以通过根据本发明形成具有高可控性的薄膜来提供发光性能和寿命优异的电致发光元件。 通过向电致发光元件的第一电极施加0.4至1.5mA / cm 2的电流密度0.8至3.0秒,在第一电极上形成电致发光层,根据以下事实: 通过在电解聚合期间保持电流密度和在电极中施加电流到预定范围内的时间,特别是当电解聚合膜需要为薄膜时,可以在电极的表面上均匀地形成电解聚合膜。
Abstract:
An electroluminescent element which is superior in luminescence properties and lifetime can be provided by forming a thin film with high controllability according to the invention. An electroluminescent layer is formed over a first electrode by applying a current density of from 0.4 to 1.5 mA/cm2 for from 0.8 to 3.0 seconds to a first electrode of the electroluminescent element in accordance with the fact that an electrolytic polymerization film can be formed over the surface of the electrode uniformly by keeping a current density and time for applying the current to the electrode within a predetermined range during electrolytic polymerization especially when the electrolytic polymerization film is required to be a thin film.
Abstract translation:可以通过根据本发明形成具有高可控性的薄膜来提供发光性能和寿命优异的电致发光元件。 通过向电致发光元件的第一电极施加0.4至1.5mA / cm 2的电流密度0.8至3.0秒,在第一电极上形成电致发光层,根据以下事实: 通过在电解聚合期间保持电流密度和在电极中施加电流到预定范围内的时间,特别是当电解聚合膜需要为薄膜时,可以在电极的表面上均匀地形成电解聚合膜。
Abstract:
It is an object of the present invention to provide a polymer that is soluble in an organic solvent with a low polarity and has a high hole injecting property without adding a dopant for enhancing a hole injecting property. For that object, the present invention provides a vinyl monomer represented by the following general formula (1). In the formula, X represents any one of an oxygen atom (O) and a sulfur atom (S). Y represents any one of a hydrogen atom, an alkyl group, aryl group, a silyl group having an alkyl group or an aryl group as a substituent.
Abstract:
A layer included in an electroluminescent element is required to be thickened to optimize light extraction efficiency of the electroluminescent element and to prevent short-circuit between electrodes. However, in a conventional element material, desired light extraction efficiency cannot be accomplished since drive voltage rises or power consumption is increased as the element material is thickened. A composite is formed by mixing a conjugated molecule having low ionization potential and a substance having an electron-accepting property to the conjugated molecule. A composite layer included in an element is formed using the composite as an element material. The composite layer is arranged between a first electrode and a light emitting layer or between a second electrode and a light emitting layer. The composite layer has high conductivity; therefore, drive voltage does not rise even if a film thickness is increased. Thus, an electroluminescent element which can prevent short-circuit of an electrode can be provided.
Abstract:
The present invention provides a composite material having high conductivity, a light-emitting element and a light-emitting device using the composite material. Further, the present invention provides a manufacturing method of a light-emitting element which is suitable for mass production. A light-emitting element of the present invention includes a layer including a luminescent substance between a pair of electrodes. The layer including a luminescent substance has a composite material which includes an organic compound, and an inorganic compound showing an electron donating property to the organic compound. Since the light-emitting element of the present invention includes a composite material made by combining an organic compound and an inorganic compound, the carrier injecting property, carrier transporting property, and conductivity thereof are excellent, and thus, the driving voltage can be reduced.