摘要:
Apparatus includes a change operator for detecting change factor information which causes the deterioration in the image; an iterative processing operator which iterates a processing cycle comprising; a first processing step to apply a first calculation to a first image utilizing the change factor information to generate a second image, calculating difference data between the deteriorated image and the second image; a second processing step to apply a second calculation to the second image utilizing the difference data to generate a third image; and a replacing step to replace the first image with the third image; wherein the processing cycle further includes (a) detecting whether a coincidence exists between the sign of a first difference data and the sign of a second difference data or not, and (b) increasing an absolute value of the difference data utilized in the second processing step when the coincidence is detected in step (a).
摘要:
An image deteriorated by camera shake, or the like, is restored in a short period of time. A ∇J computation section computes an evaluation value J from a deteriorated image G captured by means of photographing, a restored image F, and a PSF computed from an angular velocity detected by an angular velocity sensor, and further computes ∇J. When the square of norm of ∇J exceeds a threshold value, there is iterated processing for computing a new, restored image F by means of subtracting ε·∇J from the restored image F. A convergence parameter computation section sets the convergence parameter ε as a value which first shows an increase and subsequently a decrease depending on the number of iterations, thereby increasing the speed of convergence and inhibiting divergence.
摘要:
An image processing apparatus includes a processor for restoring a pre-change image, an image which should have been originally captured, or an image approximating the same from source image data having undergone a change, such as deterioration, wherein the processor performs at least once iterative processing including generation of comparative data from arbitrary image data by utilization of change factor information data as to a factor responsible for a change in an image, comparison, with the comparative data, of source image data to be compared, generation of restored data by distribution of acquired difference data to the arbitrary image data by utilizing the change factor information data, and use of the restored data in place of the arbitrary image data, thereby iterating analogous processing; and accelerated processing for distributing a first corrected value, whose absolute value is larger than that of the difference data, in place of the difference data.
摘要:
An image deteriorated by camera shake, or the like, is restored in a short period of time. A ∇J computation section computes an evaluation value J from a deteriorated image G captured by means of photographing, a restored image F, and a PSF computed from an angular velocity detected by an angular velocity sensor, and further computes ∇J. When the square of norm of ∇J exceeds a threshold value, there is iterated processing for computing a new, restored image F by means of subtracting ε·∇J from the restored image F. A convergence parameter computation section sets the convergence parameter ε as a value which first shows an increase and subsequently a decrease depending on the number of iterations, thereby increasing the speed of convergence and inhibiting divergence.
摘要:
In a system built from an imaging device and an output device, camera shake compensation is performed while processing load imposed on the imaging device is being lessened. An image processing system is built from a digital camera and a printer. Image data pertaining to a subject are recorded in a recording medium. Further, the amount of blurring of the digital camera is detected by means of a gyroscopic sensor, and PSF data are recorded in the recording medium. The printer is equipped with an image conversion section, a PSF conversion section, and an image restoration section, and a resolution of the image data and a resolution of the PSF data are converted, thereby restoring an original image.
摘要:
An error in a camera having angular velocity sensors is eliminated. A camera is placed on a rotating table and rotated, angular velocities are detected by angular velocity sensors, and a CZP chart is photographed. The motion of the camera is computed as a locus of motion of a point light source on an imaging plane from the outputs from the angular velocity sensors. The inclination of the locus motion is compared with the inclination of a zero-crossing line which has been obtained by subjecting the photographed image to Fourier transformation, to thus compute angles of relative inclination of the angular velocity sensors with respect to the image sensor. Further, when no coincidence exists between the zero-crossing line of the data into which a PSF has been Fourier-transformed and a zero-crossing line of the data into which a photographed image has been Fourier-transformed, a computer computes a correction coefficient from a proportion of an interval between the zero-crossing lines, on condition that an error is included in the angular velocity sensors or the focal length of a photographing lens, and the error is eliminated.
摘要:
Inclinations of angular velocity sensors attached to a camera are detected, and outputs from the angular velocity sensors are calibrated. A camera is placed on a rotating table and rotated, angular velocities are detected by angular velocity sensors, and a CZP chart is photographed. The motion of the camera is expressed as a locus of motion of a point light source on an imaging plane from the outputs from the angular velocity sensors. The inclination of the locus motion is compared with the inclination of a zero-crossing line which has been obtained by subjecting the photographed image to Fourier transformation, to thus compute angles of relative inclination of the angular velocity sensors with respect to the image sensor.
摘要:
An error in a camera having angular velocity sensors is eliminated. A camera is placed on a rotating table and rotated, angular velocities are detected by angular velocity sensors, and a CZP chart is photographed. The motion of the camera is computed as a locus of motion of a point light source on an imaging plane from the outputs from the angular velocity sensors. The inclination of the locus motion is compared with the inclination of a zero-crossing line which has been obtained by subjecting the photographed image to Fourier transformation, to thus compute angles of relative inclination of the angular velocity sensors with respect to the image sensor. Further, when no coincidence exists between the zero-crossing line of the data into which a PSF has been Fourier-transformed and a zero-crossing line of the data into which a photographed image has been Fourier-transformed, a computer computes a correction coefficient from a proportion of an interval between the zero-crossing lines, on condition that an error is included in the angular velocity sensors or the focal length of a photographing lens, and the error is eliminated.
摘要:
A battery pack includes terminals (33) and a lock hook (37b). The terminals (33) are fastened onto a circuit board (74) and connected to rechargeable batteries (39). The terminals are exposed externally of a casing (31). The hook (37b) protrudes from a surface of the casing (31), and holds the battery pack on a charger (100). A hook opening window (24) is open in one of the surfaces of the casing. The hook (37b) can protrude from the surface of the casing (31). A drain hole (28) is open in another surface of the casing. A partition rib (25) is arranged between a path and an electronic circuit. The path is separated from the circuit. The path extends inside the casing (31) from the window (24). The circuit is mounted on the board (74). The window (24) communicates with the hole (28) through the path.