摘要:
A load sensor includes a optical fiber sensor that provides output analog signals in response to shocks of various magnitudes caused by hits by a vehicle on various objects, two or more amplifiers each of which approximates a non linear function of the analog signals and a unit that converts the linear functions into digital data. Therefore, each analog signal either in a lower magnitude range or a higher magnitude range can be amplified by one of the amplifiers that has a more suitable gain, so that the magnitude of the shock can be accurately converted into digital data for a pedestrian protection airbag system.
摘要:
A load sensor includes a optical fiber sensor that provides output analog signals in response to shocks of various magnitudes caused by hits by a vehicle on various objects, two or more amplifiers each of which approximates a non linear function of the analog signals and a unit that converts the linear functions into digital data. Therefore, each analog signal either in a lower magnitude range or a higher magnitude range can be amplified by one of the amplifiers that has a more suitable gain, so that the magnitude of the shock can be accurately converted into digital data for a pedestrian protection airbag system.
摘要:
An optical fiber sensor (8) has an optical fiber (2) and, a light emitting member (3) connected to a first end (20) of the optical fiber (2), a light receiving member (4) connected to a second end (21) of the optical fiber (2). The light emitting member (3) has a light emitting portion (300) through which light is radiated to the first end (20) of the optical fiber (2). The light receiving member (4) has a light receiving portion (400) for receiving light radiated from the second end (21) of the optical fiber (2). The light emitting portion (300) is smaller than a sectional area of a core portion (25) of the optical fiber (2).
摘要:
An optical fiber is optically coupled to a light-receiving/emitting element contained in an interface box. The coupling structure is composed of a cylindrical ferule water-tightly inserted into a through-hole formed in a wall of the interface box, a resilient grommet coupled to the ferule and a coupler having the light-receiving/emitting element. An optical fiber is inserted into coaxially formed center holes of the ferule and the grommet, and an axial end of the optical fiber is exposed at an axial end of the ferule. The coupler is coupled to the ferule so that the light-receiving/emitting element directly faces the exposed end of the optical fiber to establish an optical connection at a minimized connection loss.
摘要:
A collision detection device is provided with a load detection member 2 for detecting a collision load in a collision, and a mold member 3 which is molded to be integral with the load detection member 2. The mold member 3 covers at least the surface of a collision side of the load detection member 2, to absorb at least a part of impact energy in the collision by a resilient deformation of the mold member 3. Thus, the collision detection device is substantially resistant to an impact in the collision, while being simply manufactured.
摘要:
A vehicular bumper structure includes plural load detection sensors (28, 30, 32, 34, 52) disposed at predetermined intervals in a vehicle body vertical direction between a load transmitting plate (36, 50) disposed with a bumper touch sensor and a front wall portion (20C) of a bumper reinforcement. The load transmitting plate (36, 50) is configured so as to be displaced towards a vehicle body rear side with respect to the front wall portion (20C) of the bumper reinforcement (20).
摘要:
From a collision load, a one-time integration value and a two-time integration value are computed. The one-time integration value and two-time integration value are then used for obtaining a mass and rigidity of a collision object as two primary parameters. The obtained two primary parameters are used for determining whether or not the collision object is a pedestrian. This achieves accuracy in determining the collision object that is remarkably superior to a conventional method that uses a collision load waveform.
摘要:
A colliding object determination device for a vehicle having a bumper reinforcement member (12) includes a sensor (20) and a determination circuit (40). The sensor (20) is located in a front portion of a vehicle for measuring a collision state quantity correlating with a collision load generated in a collision of a colliding body with the vehicle. The determination circuit (40) determines whether the colliding body is a pedestrian based on the measured collision state quantity. The sensor (20) is located on an upper half region of a front end face of the bumper reinforcement member (12). Thus, accuracy of discriminating the pedestrian from other objects can be improved.
摘要:
A colliding object determination device for a vehicle having a bumper reinforcement member (12) includes a sensor (20) and a determination circuit (40). The sensor (20) is located in a front portion of a vehicle for measuring a collision state quantity correlating with a collision load generated in a collision of a colliding body with the vehicle. The determination circuit (40) determines whether the colliding body is a pedestrian based on the measured collision state quantity. The sensor (20) is located on an upper half region of a front end face of the bumper reinforcement member (12). Thus, accuracy of discriminating the pedestrian from other objects can be improved.
摘要:
A collision detection device is provided with a load detection member 2 for detecting a collision load in a collision, and a mold member 3 which is molded to be integral with the load detection member 2. The mold member 3 covers at least the surface of a collision side of the load detection member 2, to absorb at least a part of impact energy in the collision by a resilient deformation of the mold member 3. Thus, the collision detection device is substantially resistant to an impact in the collision, while being simply manufactured.