摘要:
A phase difference plate and a liquid-crystal layer are provided between a polarizing plate and a selective reflection layer formed of cholesteric liquid crystal. A first color filter layer is provided on the polarizing plate side of the selective reflection layer. On the back side of the selective reflection layer, a second color filter layer is arranged. On the back side of the second color filter layer, a backlight is provided. When a liquid-crystal display device functions as a reflective liquid-crystal display device, light entering through the polarizing plate is reflected totally by the selective reflection layer and passes through the first color filter layer twice. When the liquid-crystal display device functions as a transmission liquid-crystal display device, light from the backlight passes through the selective reflection layer. Then, the light passes through the second and first color filter layers once and is outputted.
摘要:
A liquid crystal display device realizing both a wide view angle and a high-quality image display without “coloring” or “letter blurs” comprises a front substrate, a rear substrate facing to the front substrate, a liquid crystal layer sandwiched between the front substrate and the rear substrate, a mirror-reflection layer disposed on the rear substrate, a single refraction layer provided on an outer surface of the front substrate, a polarizing plate provided on an outer surface of the single refraction layer, and a diffusing layer provided on an outer surface of the polarizing late to diffuse light from the single refraction layer.
摘要:
An object of the present invention is to provide a display device which can realize a magnified image. A display device comprises a display panel having a predetermined effective display region PS, a display screen, and a magnifying optical system including a first inverting optical system constituted by a first lens array in which a plurality of first lenses corresponding to the display panel are arrayed and a second inverting optical system constituted by a second lens array in which a plurality of second lenses corresponding to the first lenses are arrayed. The magnifying optical system constitutes a plurality of channels for forming on the display screen a magnified erect image for a display image on the display panel through the corresponding first and second lenses. The magnifying optical system is constructed so as to form on the display screen an image of an image point on the display panel through at least three of the channels.
摘要:
A phase difference plate for delaying the phase of incident light by &lgr;/4 and a liquid crystal layer for shifting the incident light by &lgr;/2 in accordance with an applied voltage are interposed between a polarization plate and a selective reflecting layer made of a cholesteric liquid crystal. A color filter layer is formed on the polarization-plate-side of the selective reflecting layer. A back-surface light source for emitting light having intensity peaks in a plurality of predetermined wavelengths is located on the back-surface of the selective reflecting layer. The selective reflecting layer is formed to transmit almost all light components in the plurality of small regions including the plurality of predetermined wavelengths and reflect almost all light components in regions between the plurality of small regions.
摘要:
Light diffusion layer 12, which diffuses reflected light by a reflecting surface, is arranged on a reflecting type liquid crystal display device having at least 2 substrates 24 and 29, liquid crystal layer 30 inserted between these substrates, and reflecting surface 16a which reflects light via this liquid crystal layer. This light diffusion layer forms a fine particle dispersion layer or a diffraction grating layer combined of 2 types of refractive index medium with differing refractive indices, and when the refractive index of first refractive index medium 13 is nA(400) at light wave length 400 nm, and nA(700) at light wave length 700 nm, and the refractive index of second refractive index medium 14 is nB (400) at light wave length 400 nm, and nB(700) at light wave length 700 nm, then, (nA(400)/nA(700))×0.9≦(nB(400)/nB(700))≦(nA(400)/nA(700))×1.1.
摘要:
A flat panel display device includes a polarizer, a polarized light reflection layer made of a cholesteric liquid crystal layer, a fixed retarder layer to delay an incident light phase by &lgr;/4, and a variable retarder layer to shift an incident light phase by &lgr;/2 in response to applied voltages. The fixed and variable retarder layers are held between the polarizer and the polarized light reflection layer. A retardation plate and a second polarizer are disposed behind the polarized light reflection layer to transform incident light into a circularly polarized light component of which rotation direction is the same as that of the circularly polarized light selectively reflected from the polarized light reflection layer. The flat panel display device is used as reflection type and semi-transmission type displays with high light efficiency of light utilization and high brightness as well as low power consumption.
摘要:
A first phase plate and a third phase plate, which constitute a polarizer structure, cooperate to impart a phase difference of a ¼ wavelength to linearly polarized light that emerges from a first polarizer plate. A second phase plate and a fourth phase plate cooperate to impart a phase difference of a ¼ wavelength to linearly polarized light that emerges from a second polarizer plate. Slow axes in planes of the first phase plate and the second phase plate are substantially parallel. A crossed-axes angle between slow axes in planes of the first phase plate and the third phase plate is 60°, a crossed-axes angle between slow axes in planes of the second phase plate and the fourth phase plate is 60°, and a crossed-axes angle between slow axes in planes of the third phase plate and fourth phase plate is 60°.
摘要:
In an OCB mode liquid crystal display device, a first phase layer that causes a retardation in an in-plane azimuth direction is disposed between a first polarizing layer and a liquid crystal layer such that a slow axis of the first phase layer intersects at right angles with an absorption axis of the first polarizing layer, a second phase layer that causes a retardation in an in-plane azimuth direction is disposed between a second polarizing layer and the first phase layer such that a slow axis of the second phase layer intersects at right angles with an in-plane azimuth direction in which liquid crystal molecules are inclined, and a third phase layer, which has an optical axis in a normal direction of the liquid crystal display device and has, as a whole, a negative uniaxial function, is disposed between the second polarizing layer and the first phase layer.
摘要:
A circular-polarization-based mode LCD includes, in the named order, a light source a circular polarizer structure including a first polarizer plate and a first phase plate, a variable retarder structure including a liquid crystal cell, and a circular analyzer structure including a second polarizer plate and a second phase plate. Each of the first phase plate and the second phase plate is a uniaxial ¼ wavelength plate. A third phase plate that has a refractive index anisotropy of nx>ny=nz is disposed between the first polarizer plate and the first phase plate such that a slow axis thereof is set to be substantially parallel to a transmission axis of the first polarizer plate. A fourth phase plate that has a refractive index anisotropy of nx=ny>nz is disposed between the liquid crystal cell and the first polarizer plate or the second phase plate.
摘要:
A reflecting type liquid crystal display device having, a first substrate provided on one main surface thereof with a first electrode comprising a plurality of pixel electrodes arrayed in a matrix form and a wiring interposed between these pixel electrodes, the first substrate being disposed on an observation side, a second substrate provided on one main surface thereof with a second electrode and disposed to face the first substrate in such a manner that the surface bearing the second electrode faces to the surface bearing the first electrode, a liquid crystal composition layer interposed between the first substrate and the second substrate, and a white reflecting layer formed on a region of the surface of the first substrate where the first electrode is not formed.