摘要:
A metal halide lamp of the present invention has a ceramic discharge tube and a proximity conductor disposed adjacent to the ceramic discharge tube.
摘要:
A discharge tube (1) made of transparent ceramics includes a main tube (17) and slender tubes provided on both sides thereof. In one of the slender tubes, a main electrode lead-in member that is connected to a main electrode (6b) is inserted and sealed. In the other two-hole slender tube, a main electrode lead-in member that is connected to a main electrode (6a) and an auxiliary electrode lead-in member that is connected to an auxiliary electrode (9) are inserted and sealed so as to be isolated electrically from each other. With such a structure, it is possible to achieve highly efficient and stable lifetime characteristics and suppress changes in characteristics during lifetime caused by leaks during an operation and reaction between a sealing material and an enclosed material inside the discharge tube. In addition, it is possible to obtain a high-pressure metal vapor discharge lamp that has stable lamp starting characteristics and allows a free design of the discharge tube.
摘要:
A high-pressure metal vapor discharge lamp of the present invention has a discharge tube made of a ceramic material having a transparent or translucent property, and the discharge tube has a main tube, and a first and a second disks for sealing the main tube. The first disk is disposed at one opening of said main tube, and the second disk disposed at the other opening of said main tube. Further, the first and the second disks have a cylindrical narrow tube. A lead-through-part for disposing either of a first and a second main electrodes and an auxiliary electrode in the main tube and a sealing member integrated with the lead-through-wire are inserted in the cylindrical narrow tube, and the sealing member is fixed to the cylindrical narrow tube so that the cylindrical narrow tube is sealed airtightly.
摘要:
A metal vapor discharge lamp includes a discharge tube comprising a translucent ceramic discharge portion that defines a discharge space in which a luminous metal is sealed, slender tube portions provided on both ends of the discharge portion, a pair of electrodes provided with coils at the tips thereof, electrode supports that support the electrodes at one end thereof and extend all the way to the ends of the slender tube portions on the side opposite to the discharge space at the other end thereof, and a sealant for sealing the ends of the slender tube portions on the side opposite to the discharge space so as to attach the electrode supports to the inner surfaces of the slender tube portions, in which X>0.0056P+0.394 is satisfied, where P is a lamp power (W) and X is a distance (mm) from the ends of the coils on the side of the slender tube portions to the ends of the slender tube portions on the side of the discharge space.
摘要:
A metal halide lamp has an arc tube including an arc tube container made of an oxide-based translucent ceramic material. The arc tube is filled with cerium halide as a luminescent material and a halide of a rare earth element that is more reactive with the ceramic material than is the cerium halide. Accordingly, a reaction between the oxide-based translucent ceramic material and the halide of a rare earth element is accelerated while a reaction between the oxide-based translucent ceramic material and the cerium halide is suppressed. This suppresses a decrease of the cerium halide that serves for light emission, and also reduces changes in the lamp color temperature. Thereby, during aging of the lamp, the flux maintenance factor and color temperature are improved. Therefore, the indoor-outdoor metal halide lamp provides a white light source color that has high-wattage, high luminous efficiency, and a long service life.
摘要:
A safety metal halide lamp with a high luminous efficiency and a long lamp life is provided. The metal halide lamp includes an arc tube made of light-transmissive ceramic, in which a pair of electrodes is provided and cerium iodide (CeI3) and sodium iodide (NaI) are enclosed as a light-emitting substance, wherein a molar composition rate NaI/CeI3 of the light-emitting substance is specified within a range of 3.8 to 10, inclusive, and a wall load on the arc tube ranges from 13 to 23 W/cm2, inclusive, and on a series of X, Y coordinates, where X denotes a value of a lamp watt (W) and Y denotes a value of Le/&phgr;i, where Le and &phgr;i denote a distance between the pair of electrodes and an internal diameter of the arc tube, respectively, values of the Le/&phgr;i and the lamp watt are specified to be within a range surrounded by lines passing through the points (200, 0.75), (300,0.80), (400, 0.85), (700, 1.00), (1,000, 1.15), (1,000, 2.10), (700, 2.00), (400, 1.90), (300, 1.80), and (200, 1.70) in this stated order.
摘要:
A metal halide lamp has an arc tube including an envelope as an arc tube container made of an oxide-based translucent ceramic material, and the arc tube is filled with luminescent materials comprising at least a cerium halide, a sodium halide, a thallium halide and an indium halide. An amount of the cerium halide is in a range from 20 wt % to 69.0 wt %, an amount of the sodium halide is in a range from 30 wt % to 79.0 wt %, and a total amount of the thallium halide and the indium halide is in a range from 1.0 wt % to 20 wt % with respect to the entire metal halides. Accordingly, the arc discharge is spread, bending of the arc discharge toward the arc tube wall is suppressed, and thus, the metal halide lamp has improved luminescent efficiency, where lowering of the flux maintenance factor is suppressed even after a long-time use, and hues of the luminescent colors are corrected.
摘要:
To provide a high-efficiency and long-life high intensity discharge lamp that is obtained by a configuration in which a neon gas or a neon-based gaseous mixture is filled as a starting-assistance rare gas for an alumina ceramic arc tube, and a filling pressure is set to 13 kPa or more. The high intensity discharge lamp is provided with the alumina ceramic arc tube having a discharge arc tube, alumina ceramic narrow tubes formed at both end portions of the discharge arc tube, electrodes and power feeders, the electrodes and the power feeders being arranged to form spaces in the narrow tubes. The discharge arc tube is filled with the neon gas or the neon-based gaseous mixture as the starting-assistance rare gas at a filling pressure of 13 kPa or more.