摘要:
Characteristics of a magnetic material are improved without using a heavy rare earth element as a scarce resource. By incorporating fluorine into a magnetic powder and controlling the crystal orientation in crystal grains, a magnetic material securing magnetic characteristics such as coercive force and residual flux density can be fabricated. As a result, the resource problem with heavy rare earth elements can be solved, and the magnetic material can be applied to magnetic circuits that require a high energy product, including various rotating machines and voice coil motors of hard discs.
摘要:
Characteristics of a magnetic material are improved without using a heavy rare earth element as a scarce resource. By incorporating fluorine into a magnetic powder and controlling the crystal orientation in crystal grains, a magnetic material securing magnetic characteristics such as coercive force and residual flux density can be fabricated. As a result, the resource problem with heavy rare earth elements can be solved, and the magnetic material can be applied to magnetic circuits that require a high energy product, including various rotating machines and voice coil motors of hard discs.
摘要:
A manufacturing method of a magnetic core includes a first step of applying a treatment liquid for forming an insulating film to iron powder; a second step of heat-treating the iron powder to which the treatment liquid has been applied, at a temperature higher than 350 degrees; a third step of compacting the heat-treated iron powder to form a magnetic core; and a forth step of heat-treating the magnetic core at a temperature ranging from 600 degrees to 800 degrees.
摘要:
A sintered magnet and a rotating machine equipped therewith are disclosed, which include: crystal grains of a ferromagnetic material consisting mainly of iron, and a fluoride compound or an oxyfluoride compound, containing at least one element selected from the group consisting of an alkali metal element, an alkaline earth metal element, and a rare earth element, the fluoride compound or the oxyfluoride compound being formed inside some of the crystal grains or in a part of a grain boundary part. The oxyfluoride compound or the fluoride compound contains carbon, and a grain boundary width of the ferromagnetic material is smaller than a grain boundary width of the ferromagnetic material in which the fluoride compound or the oxyfluoride compound is formed.
摘要:
A rare earth magnet having a composition represented by RTB wherein R denotes a rare earth element, T a transition metal and B boron, the magnet being composed of magnet powder constituted by crystalline particles. The particles of the magnetic powder have a ratio of a short diameter being 10 μm or more to a long diameter is 0.5 or less. An element Rm having a magnetic anisotropy higher than that of the rare earth element is contained in the surface and inside of the magnet constituted by the magnet powder in an approximately constant concentration. An oxy-fluoride and carbon are present at boundaries of the particles of the magnet powder.
摘要:
A magnet comprising magnetic powder containing at least one rare earth metal element, and an oxide binder for binding the magnetic powder, wherein an inter-face distance of the binder determined by diffraction analysis is 0.25 to 2.94 nm. The disclosure also discloses a method of manufacturing a magnet comprising; compacting magnetic powder containing at least one rare earth element under pressure in a mold; impregnating the compacted magnetic powder molding with a precursor solution of an oxide material; and heat-treating the compacted magnetic molding impregnated with the precursor thereby to impart an inter-face distance determined by diffraction analysis to the binder in the compacted molding. The distance is 0.25 to 2.94 nm.
摘要:
A rare earth magnet having a composition represented by RTB wherein R denotes a rare earth element, T a transition metal and B boron, the magnet being composed of magnet powder constituted by crystalline particles. The particles of the magnetic powder have a ratio of a short diameter being 10 μm or more to a long diameter is 0.5 or less. An element Rm having a magnetic anisotropy higher than that of the rare earth element is contained in the surface and inside of the magnet constituted by the magnet powder in an approximately constant concentration. An oxy-fluoride and carbon are present at boundaries of the particles of the magnet powder.
摘要:
A sintered magnet according to the present invention is a sintered magnet configured from a magnetic powder grain having Nd2Fe14B as a main component, in which: fluorine, a heavy rare earth element, oxygen, and carbon are segregated in part of grain-boundary regions of said sintered magnetic powder grain; concentration of the carbon is higher than concentration of the fluorine at a grain-boundary triple junction of the grain-boundary region; and concentration of the heavy rare earth element decreases from said grain-boundary triple junction toward an inside of said magnetic powder grain.
摘要:
A magnet comprising magnetic powder containing at least one rare earth metal element, and an oxide binder for binding the magnetic powder, wherein an inter-face distance of the binder determined by diffraction analysis is 0.25 to 2.94 nm. The disclosure also discloses a method of manufacturing a magnet comprising; compacting magnetic powder containing at least one rare earth element under pressure in a mold; impregnating the compacted magnetic powder molding with a precursor solution of an oxide material; and heat-treating the compacted magnetic molding impregnated with the precursor thereby to impart an inter-face distance determined by diffraction analysis to the binder in the compacted molding. The distance is 0.25 to 2.94 nm.
摘要:
A sintered magnet and a rotating machine equipped therewith are disclosed, which include: crystal grains of a ferromagnetic material consisting mainly of iron, and a fluoride compound or an oxyfluoride compound, containing at least one element selected from the group consisting of an alkali metal element, an alkaline earth metal element, and a rare earth element, the fluoride compound or the oxyfluoride compound being formed inside some of the crystal grains or in a part of a grain boundary part. The oxyfluoride compound or the fluoride compound contains carbon, and a grain boundary width of the ferromagnetic material is smaller than a grain boundary width of the ferromagnetic material in which the fluoride compound or the oxyfluoride compound is formed.