摘要:
A head position control device uses a current observer control which performs two degree of freedom control, with which a current step difference due to the difference of eccentricities between heads is prevented without affecting the seek waveform after switching heads. The head position control device has a locus generation section, which calculates an initial value of the correction locus for canceling the current step difference of the output current based on an output current supplied to an actuator before switching, and an eccentricity correction current and initial velocity of another head after switching; and a two degree of freedom control system to which a seek locus is input, and supplies a correction locus according to the initial value to the two degree of freedom control system. One parameter can correct the initial velocity and the current step difference.
摘要:
A head position control device uses a current observer control which performs two degree of freedom control, with which a current step difference due to the difference of eccentricities between heads is prevented without affecting the seek waveform after switching heads. The head position control device has a locus generation section, which calculates an initial value of the correction locus for canceling the current step difference of the output current based on an output current supplied to an actuator before switching, and an eccentricity correction current and initial velocity of another head after switching; and a two degree of freedom control system to which a seek locus is input, and supplies a correction locus according to the initial value to the two degree of freedom control system. One parameter can correct the initial velocity and the current step difference.
摘要:
According to one embodiment, there is provided a magnetic disk device including an acceleration feedforward module, an eccentricity correction module, and a control module. The acceleration feedforward module includes a first amplification module, a second amplification module, and an addition module. The first amplification module amplify a first rotation correlation value according to a rotation component by a first gain. The second amplification module amplifies a second rotation correlation value according to a rotation synchronization component of the rotation component, by a second gain acquired by subtracting the first gain from 1. The addition module adds the first rotation correlation value amplified by the first amplification module and the second rotation correlation value amplified by the second amplification module to obtain the first correction amount.
摘要:
According to one embodiment, an information storage device includes a recording/reproducing head, a positioning controller, a position detector, a storage module, and a position error detector. The position detector detects the position of the recording/reproducing head. The storage module stores servo control filters. The position error detector generates a new position error signal from a target position and the position of the recording/reproducing head when the positioning controller performs positioning control with control current obtained from a position error signal having passed through each servo control filter. Upon occurrence of a recording/reproducing error, learning to calculate a vibration amount from the position of the recording/reproducing head is sequentially performed for the servo control filters for a predetermined time. The positioning controller performs the positioning control with control current obtained from the position error signal having passed through one of the servo control filters where the vibration amount is smallest.
摘要:
According to one embodiment, an information storage device includes a recording/reproducing head, a positioning controller, a position detector, a storage module, and a position error detector. The position detector detects the position of the recording/reproducing head. The storage module stores servo control filters. The position error detector generates a new position error signal from a target position and the position of the recording/reproducing head when the positioning controller performs positioning control with control current obtained from a position error signal having passed through each servo control filter. Upon occurrence of a recording/reproducing error, learning to calculate a vibration amount from the position of the recording/reproducing head is sequentially performed for the servo control filters for a predetermined time. The positioning controller performs the positioning control with control current obtained from the position error signal having passed through one of the servo control filters where the vibration amount is smallest.
摘要:
According to one embodiment, a position demodulator includes a demodulator, a phase corrector, and a position demodulating module. The demodulator demodulates a first demodulated signal and a second demodulated signal having a phase difference of 90 degrees from the first demodulated signal as a result of discrete Fourier transform operation on a read signal of a null servo pattern recorded in a servo area of a medium read out by a head. The phase corrector carries out correction to tilt respective vectors of the first demodulated signal and the second demodulated signal represented on a phase plane by a predetermined angle. The position demodulating module demodulates a positional signal for determining the position of the core of the head based on the first demodulated signal and the second demodulated signal corrected by the phase corrector.
摘要:
According to one embodiment, a position demodulator includes a demodulator, a phase corrector, and a position demodulating module. The demodulator demodulates a first demodulated signal and a second demodulated signal having a phase difference of 90 degrees from the first demodulated signal as a result of discrete Fourier transform operation on a read signal of a null servo pattern recorded in a servo area of a medium read out by a head. The phase corrector carries out correction to tilt respective vectors of the first demodulated signal and the second demodulated signal represented on a phase plane by a predetermined angle. The position demodulating module demodulates a positional signal for determining the position of the core of the head based on the first demodulated signal and the second demodulated signal corrected by the phase corrector.
摘要:
A head position control method controls the position of a head by correcting components synchronizing rotation of a disk based on the head control amount. A correction signal for components synchronizing rotation is generated by using a filter function. The filter function that integrates the sine and cosine terms of DFT and inverse DFT and forms multiply of the complex values a(m) and b(m) and sine and cosine for frequency conversion, is measured in advance. The complex values are the m degree of RRO frequencies having frequency characteristics to be multiplied (1+C(z) P(z)) or −(1+C(z) P(z)/P(z)).
摘要:
A positioning control device executes disturbance observer control having a disturbance suppression function, wherein changes of control characteristics are prevented even if the disturbance frequency is suppressed. When a control value of an actuator is computed using estimated gains of the actuator and estimated gains of disturbance according to an estimated position error by disturbance observer control including a model of the actuator and model of the disturbance, the disturbance frequency is estimated according to the estimated position error, and the estimated gains of the actuator and the estimated gains of the disturbance, corresponding to the disturbance frequency, are changed. Therefore appropriate observer control according to the disturbance frequency can be implemented.
摘要:
A head position control system controls the position of the head by correcting the components synchronizing rotation of the disk from the head control amount, in which an adjusted gain to minimize the components synchronizing rotation after correction is theoretically acquired. An adjusted gain based on the ratio of the magnitude between the components synchronizing rotation of a disk and the components not synchronizing rotation of the disk in the position signals is used. And a gain to minimize RRO after correction can be theoretically determined using an expression to determine RRO after correction. The gain can be determined without depending on experiment, and the value of RRO after correction can be guaranteed, therefore the manufacturing time and the device specifications can be determined.