摘要:
A polymer pattern forming method including the steps of (a) generating radicals in a pattern forming region of a matrix layer which uniformly contains a radical generating agent, thereby forming a patterned latent image due to the radicals in the pattern forming region; and (b) bringing a monomer which polymerizes by radical polymerization into contact with the matrix layer in which the patterned latent image has been or is being formed, to have the radicals which have been or are being generated induce a chain addition polymerization of the monomer so as to form a polymer pattern on the pattern forming region.
摘要:
An optical waveguide having a clad and a core, the core being made of polymer material containing a repetitive unit having formula (1), (2) or (3): Each of these polymer materials has a higher glass transition temperature and lower water absorption than those of deuterated PMMA, has a transparency equivalent with that of deuterated PMMA, and shows neither light absorption nor scattering in the operating wavelength region. An optical waveguide with a core fabricated using these polymer materials is high in heat resistance and low in water absorption. Thus using the waveguide will successfully provide optical communication elements with an advanced durability against the environment.
摘要:
A polymer material containing a repetitive unit having a formula: The polymer material has a higher glass transition temperature and a lower water absorption than those of deuterated PMMA, but has a transparency equivalent with that of deuterated PMMA. The material also shows neither light absorption nor scattering in an operating wavelength region.
摘要:
There is provided an etching method in which a protective film existing in an etching-destined region of a substrate structure is removed by means of ICP-RIE to form an exposure region of the principal surface of the substrate. The substrate structure comprises a substrate, a protective film formed on the substrate, a photoresist layer formed on the protective film, and a hole formed throughout the photoresist layer. The hole comprises an opening formed in the photoresist layer surface and a hollow linked to the opening in the thickness direction of the photoresist layer and reaching the protective film. ICP-RIE is performed under conditions such that (1) ICP power is 20 to 100 W, (2) RIE power is 5 to 50 W, and (3) the pressure in the etching chamber is 1 to 100 mTorr.
摘要:
The contact resistance between an Ohmic electrode and an electron transit layer is reduced compared with a case in which the Ohmic electrode is provided to a depth less than the heterointerface. As a result, for an Ohmic electrode provided in a structure comprising an electron transit layer formed of a first semiconductor layer formed on a substrate, an electron supply layer comprising a second semiconductor layer forming a heterojunction with the electron transit layer and having a smaller electron affinity than the first semiconductor layer, and a two-dimensional electron layer induced in the electron transit layer in the vicinity of the heterointerface, the end portion of the Ohmic electrode is positioned in the electron transit layer in penetration into the electron supply layer at a depth equal to or greater than the heterointerface.
摘要:
An etching structure includes a substrate, a to be etched filmcovering the principal surface of the substrate, and an exposure region exposing the principal surface of the substrate and obtained by removing a part of the to be etched film. A region of the to be etched film constitutes a peripheral region surrounding the exposure region. Another region of the to be etched film outside the peripheral region constitutes a flat region. The film thickness of the to be etched film increases as the distance from the exposure region increases, such that the inclination of the outline of the cross section of the to be etched film that exists within the peripheral region decreases as the distance from the exposure region increases. The to be etched film has a side wall that extends perpendicularly to the principal surface at a boundary between the peripheral region and the flat region.
摘要:
The contact resistance between an Ohmic electrode and an electron transit layer is reduced compared with a case in which the Ohmic electrode is provided to a depth less than the heterointerface. As a result, for an Ohmic electrode provided in a structure comprising an electron transit layer formed of a first semiconductor layer formed on a substrate, an electron supply layer comprising a second semiconductor layer forming a heterojunction with the electron transit layer and having a smaller electron affinity than the first semiconductor layer, and a two-dimensional electron layer induced in the electron transit layer in the vicinity of the heterointerface, the end portion of the Ohmic electrode is positioned in the electron transit layer in penetration into the electron supply layer at a depth equal to or greater than the heterointerface.
摘要:
The contact resistance between an Ohmic electrode and an electron transit layer is reduced compared with a case in which the Ohmic electrode is provided to a depth less than the heterointerface. As a result, for an Ohmic electrode provided in a structure comprising an electron transit layer formed of a first semiconductor layer formed on a substrate, an electron supply layer comprising a second semiconductor layer forming a heterojunction with the electron transit layer and having a smaller electron affinity than the first semiconductor layer, and a two-dimensional electron layer induced in the electron transit layer in the vicinity of the heterointerface, the end portion of the Ohmic electrode is positioned in the electron transit layer in penetration into the electron supply layer at a depth equal to or greater than the heterointerface.
摘要:
The contact resistance between an Ohmic electrode and an electron transit layer is reduced compared with a case in which the Ohmic electrode is provided to a depth less than the heterointerface. As a result, for an Ohmic electrode provided in a structure comprising an electron transit layer formed of a first semiconductor layer formed on a substrate, an electron supply layer comprising a second semiconductor layer forming a heterojunction with the electron transit layer and having a smaller electron affinity than the first semiconductor layer, and a two-dimensional electron layer induced in the electron transit layer in the vicinity of the heterointerface, the end portion of the Ohmic electrode is positioned in the electron transit layer in penetration into the electron supply layer at a depth equal to or greater than the heterointerface.
摘要:
There is provided an etching method in which a protective film existing in an etching-destined region of a substrate structure is removed by means of ICP-RIE to form an exposure region of the principal surface of the substrate. The substrate structure comprises a substrate, a protective film formed on the substrate, a photoresist layer formed on the protective film, and a hole formed throughout the photoresist layer. The hole comprises an opening formed in the photoresist layer surface and a hollow linked to the opening in the thickness direction of the photoresist layer and reaching the protective film. ICP-RIE is performed under conditions such that (1) ICP power is 20 to 100 W, (2) RIE power is 5 to 50 W, and (3) the pressure in the etching chamber is 1 to 100 mTorr.