摘要:
A method of manufacturing a solar cell by providing a gallium arsenide carrier with a prepared bonding surface; providing a sapphire substrate; bonding the gallium arsenide carrier and the sapphire substrate to produce a composite structure; detaching the bulk of the gallium arsenide carrier from the composite structure, leaving a gallium arsenide growth substrate on the sapphire substrate; and depositing a sequence of layers of semiconductor material forming a solar cell on the growth substrate. For some solar cells, the method further includes mounting a surrogate second substrate on top of the sequence of layers of semiconductor material forming a solar cell; and removing the growth substrate.
摘要:
A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell by providing a first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell; forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; attaching a surrogate second substrate over the third solar subcell and removing the first substrate; and etching a first trough around the periphery of the solar cell to the surrogate second substrate so as to form a mesa structure on the surrogate second substrate and facilitate the removal of the solar cell from the surrogate second substrate.
摘要:
A method of manufacturing a solar cell by providing a first substrate; depositing on a first substrate a sequence of layers of semiconductor material forming a solar cell including at least a top subcell and a bottom subcell; mounting a surrogate substrate on top of the sequence of layers adjacent to the bottom subcell; removing the first substrate to expose the surface of the top subcell; removing the surrogate substrate; and holding the solar cell on a vacuum chuck to support it for subsequent fabrication operations, such as attaching interconnects to the solar cells to form an interconnected array.
摘要:
A method of manufacturing a solar cell by providing a first substrate; depositing on a first substrate a sequence of layers of semiconductor material forming a solar cell including at least a top subcell and a bottom subcell; mounting a surrogate substrate on top of the sequence of layers adjacent to the bottom subcell; removing the first substrate to expose the surface of the top subcell; removing the surrogate substrate; and holding the solar cell on a vacuum chuck to support it for subsequent fabrication operations, such as attaching interconnects to the solar cells to form an interconnected array.
摘要:
A method of forming a multifunction solar cell including an upper subcell, a middle subcell, and a lower subcell by providing a first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell, the graded interlayer having a third band gap greater than the second band gap; forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; attaching a surrogate second substrate over the third solar subcell and removing the first substrate; and etching a first trough around the periphery of the solar cell to the surrogate second substrate so as to form a mesa structure on the surrogate second substrate and facilitate the removal of said solar cell from the surrogate second substrate.
摘要:
A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell by providing a first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell; forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; attaching a surrogate second substrate over the third solar subcell and removing the first substrate; and etching a first trough around the periphery of the solar cell to the surrogate second substrate so as to form a mesa structure on the surrogate second substrate and facilitate the removal of the solar cell from the surrogate second substrate.
摘要:
A method of forming a multifunction solar cell including an upper subcell, a middle subcell, and a lower subcell by providing a first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell, the graded interlayer having a third band gap greater than the second band gap; forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; attaching a surrogate second substrate over the third solar subcell and removing the first substrate; and etching a first trough around the periphery of the solar cell to the surrogate second substrate so as to form a mesa structure on the surrogate second substrate and facilitate the removal of said solar cell from the surrogate second substrate.
摘要:
A method of manufacturing a solar cell by providing a gallium arsenide carrier with a prepared bonding surface; providing a sapphire substrate; bonding the gallium arsenide carrier and the sapphire substrate to produce a composite structure; detaching the bulk of the gallium arsenide carrier from the composite structure, leaving a gallium arsenide growth substrate on the sapphire substrate; and depositing a sequence of layers of semiconductor material forming a solar cell on the growth substrate. For some solar cells, the method further includes mounting a surrogate second substrate on top of the sequence of layers of semiconductor material forming a solar cell; and removing the growth substrate.
摘要:
A multijunction solar cell including a first solar subcell having a first band gap; a second solar subcell disposed over the first subcell and having a second band gap smaller than the first band gap; a grading interlayer disposed over the second subcell and having a third band gap greater than the second band gap; a third solar subcell disposed over the interlayer that is lattice mismatched with respect to the middle subcell and having a fourth band gap smaller than the second band gap; and either a thin (approximately 2-6 mil) substrate and/or a rigid coverglass supporting the first, second, and third solar subcells.
摘要:
A method of manufacturing a solar cell by providing a first substrate; depositing sequentially on the first substrate a plurality of semiconductor layers, the plurality of semiconductor layers comprising a first layer and a last layer in the direction of deposition; forming a backside contact layer on the last semiconductor layer; forming on the last semiconductor layer a back cathode contact isolated from at least a first portion of the backside contact layer, the first portion forming the anode contact; attaching a second substrate on the backside contact layer and removing the first substrate to expose the first semiconductor layer and to define a front surface and an opposite back surface of a solar cell; forming a front cathode contact on the front surface of the solar cell; etching a first trench through the plurality of semiconductor layers to define an active portion of the solar cell with a first mesa structure including the front cathode contact and the anode contact and being surrounded by the first trench, the first mesa having a first sidewall in the first trench and a lateral peripheral region beyond the sidewall, and forming in the lateral peripheral region an electrically conductive layer extending from the front surface where it is electrically connected to the front cathode contact along the first sidewall of the first trench to be electrically connected to the back cathode contact.