Abstract:
A method of fabricating a semiconductor device includes forming a first semiconductor region at a front surface of a substrate, the first semiconductor region including an active element that regulates current flowing in a thickness direction of the substrate; grinding a rear surface of the substrate; after the grinding, performing a first etching that etches the rear surface of the substrate with a chemical solution including phosphorus; after the first etching, performing a second etching that etches the rear surface with an etching method with a lower etching rate than the first etching; and after the second etching, forming a second semiconductor region through which the current is to flow, by implanting impurities from the rear surface of the substrate.
Abstract:
A light emitting device including a support layer; a reflective electrode disposed on the support layer; an ohmic electrode disposed on the reflective electrode, the ohmic electrode including a transparent electrode; and a semiconductor structure disposed on the ohmic electrode, the semiconductor structure including a p-type semiconductor layer disposed on the ohmic electrode; a light emitting layer disposed on the p-type semiconductor layer; and an n-type semiconductor layer disposed on the light emitting layer. Further, the transparent electrode has a thickness in the range of 40 nm to 90 nm.
Abstract:
A method may include the steps of directly bonding a semiconductor device having a substrate to an element; and removing a portion of the substrate to expose a remaining portion of the semiconductor device after bonding. The element may include one of a substrate used for thermal spreading, impedance matching or for RF isolation, an antenna, and a matching network comprised of passive elements. A second thermal spreading substrate may be bonded to the remaining portion of the semiconductor device. Interconnections may be made through the first or second substrates. The method may also include bonding a plurality of semiconductor devices to an element, and the element may have recesses in which the semiconductor devices are disposed.
Abstract:
A method of manufacturing a laser diode array capable of inhibiting electric cross talk is provided. The method of manufacturing a laser diode array includes a processing step of forming a peel layer containing an oxidizable material and a vertical resonator structure over a first substrate sequentially from the first substrate side by crystal growth, and then selectively etching the peel layer and the vertical resonator structure to the first substrate, thereby processing into a columnar shape, a peeling step of oxidizing the peel layer from a side face, and then peeling the vertical resonator structure of columnar shape from the first substrate, and a rearrangement step of jointing a plurality of vertical resonator structures of columnar shape obtained by the peeling step to a surface of a metal layer of a second substrate formed with the metal layer on the surface.
Abstract:
A method may include the steps of directly bonding a semiconductor device having a substrate to an element; and removing a portion of the substrate to expose a remaining portion of the semiconductor device after bonding. The element may include one of a substrate used for thermal spreading, impedance matching or for RF isolation, an antenna, and a matching network comprised of passive elements. A second thermal spreading substrate may be bonded to the remaining portion of the semiconductor device. Interconnections may be made through the first or second substrates. The method may also include bonding a plurality of semiconductor devices to an element, and the element may have recesses in which the semiconductor devices are disposed.
Abstract:
A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.
Abstract:
There is provided a method of fabricating a semiconductor device, the method including: forming a first semiconductor region at a front surface of a substrate, the first semiconductor region including an active element that regulates current flowing in a thickness direction of the substrate; grinding a rear surface of the substrate; after the grinding, performing a first etching that etches the rear surface of the substrate with a chemical solution including phosphorus; after the first etching, performing a second etching that etches the rear surface with an etching method with a lower etching rate than the first etching; and after the second etching, forming a second semiconductor region through which the current is to flow, by implanting impurities from the rear surface of the substrate.
Abstract:
A semiconductor device with high reliability is provided using an SOI substrate. When the SOI substrate is fabricated by using a technique typified by SIMOX, ELTRAN, or Smart-Cut, a single crystal semiconductor substrate having a main surface (crystal face) of a {110} plane is used. In such an SOI substrate, adhesion between a buried insulating layer as an under layer and a single crystal silicon layer is high, and it becomes possible to realize a semiconductor device with high reliability.
Abstract:
Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
Abstract:
A single crystal silicon layer is formed on a principal surface of a first wafer by epitaxial growth. A silicon oxide layer is formed on the single crystal silicon layer. Next, a defect layer is formed inside the single crystal silicon layer by ion implantation, and then, the second wafer is bonded to the silicon oxide layer on the first wafer. After that, an SOI wafer including the silicon oxide layer formed on the second wafer and the single crystal silicon layer formed on the silicon oxide layer is formed by separating the first wafer including the single crystal silicon layer from the second wafer including the single crystal silicon layer in the defect layer. Then, a photodiode is formed in the single crystal silicon layer. An interconnect layer is formed on a surface of the single crystal silicon layer which is opposite to the silicon oxide layer.