摘要:
This document describes Toll Free IP (TIP), a business model and its enabling methods to provide no-charge-to-user (“toll-free”) connectivity through IP-based access networks (e.g., public wireless hotspot networks based on IEEE 802.11), which may be operated by different network operators. With TIP, the use of networks to communicate with a toll-free IP destination will be paid by the owner of the toll-free IP destination. A toll-free IP destination can be identified in many ways, e.g., by a toll-free IP address, toll-free Internet Domain Name, a toll-free Universal Resource Identifier or Universal Resource Locator. TIP enables a user to use networks without prior service subscriptions with network or service providers and without any special terminal software or hardware for gaining permission to use a network. It allows users to use more access networks, i.e., larger “footprints”, than any individual network operator or aggregator can provide. With TIP, a service provider can provide services over IP-based access networks without the need to have business arrangements with each individual network operator or aggregator. TIP can also be used to enable other value-added services such as Prepaid IP, Collect IP, Selective Charging, and a single prepaid account across access networks of multiple operators or aggregators and even across wireless LANs (e.g., public hotspots and enterprise wireless LANs) and cellular networks.
摘要:
Systems and methods are described for secure and seamless roaming between internal and external networks. Double and triple tunnels may be used to connect a mobile node to a correspondent host. A mobile node may include the ability to connect to two networks simultaneously to enable seamless roaming between networks.
摘要:
Systems and methods are described for secure and seamless roaming between internal and external networks. Double and triple tunnels may be used to connect a mobile node to a correspondent host. A mobile node may include the ability to connect to two networks simultaneously to enable seamless roaming between networks.
摘要:
Systems and methods are described for secure and seamless roaming between internal and external networks. Double and triple tunnels may be used to connect a mobile node to a correspondent host. A mobile node may include the ability to connect to two networks simultaneously to enable seamless roaming between networks.
摘要:
Systems and methods are described for secure and seamless roaming between internal and external networks. Double and triple tunnels may be used to connect a mobile node to a correspondent host. A mobile node may include the ability to connect to two networks simultaneously to enable seamless roaming between networks.
摘要:
In some embodiments, a system and method for substantially real-time comparison of quality of interfaces by mobile devices over heterogeneous networks is disclosed. The method can be performed using a dynamic and rapid comparison by distributed hosts, using a minimal number of injected network packets, using minimal path quality metrics, which path quality metrics are independent of how a QoI is measured, and in a manner suitable for both wireline and wireless networks.
摘要:
This application sets forth, among other things, a new approach for real time collection, discovery, and sharing of network and user information, which we refer to as Autonomous Collaborative Information Collection, Discovery, and Sharing (AC-CDS). It is autonomous because regular mobile users and devices act autonomously to collect information and make the information available to others. It is collaborative as the autonomous actions of the mobile users and devices help each other to discover the information they want.
摘要:
A system and method for maximizing the standby time of mobile communication devices that have WiFi or other high energy-consuming network interfaces, by predicting in real time actionable silent periods (ASPs) of the interface and shutting the interface down during these ASPs. Standby times are significantly increased, resulting in longer periods of operation before battery charging is required, while keeping minimal the probabilities of missing incoming data packets when the interface is turned off.
摘要:
A system and method for maximizing the standby time of mobile communication devices that have WiFi or other high energy-consuming network interfaces, by predicting in real time actionable silent periods (ASPs) of the interface and shutting the interface down during these ASPs. Standby times are significantly increased, resulting in longer periods of operation before battery charging is required, while keeping minimal the probabilities of missing incoming data packets when the interface is turned off.
摘要:
A system and method for maximizing the standby time of mobile communication devices that have WiFi or other high energy-consuming network interfaces, by predicting in real time actionable silent periods (ASPs) of the interface and shutting the interface down during these ASPs. Standby times are significantly increased, resulting in longer periods of operation before battery charging is required, while keeping minimal the probabilities of missing incoming data packets when the interface is turned off.