摘要:
A screen in which observation distance may be adjusted while maintaining image brightness and a projection system using the screen. In a light control layer of a screen, a first angle region that determines a diffusion distribution of a reflected light is different according to the screen position in a control direction in which light diffusion control is performed. Accordingly, a diffusion distribution of image light emitted from a screen surface is adjusted to be tilted downward by an upper end and upward by a lower end according to the screen position. Thus, for example, a size of a diffused angle range is maintained to be 30°, and a direction in which the image light is diffusion-emitted corresponds to an assumed position of an observer. The projection image can be observed while maintaining brightness of an image and the observation distance can be adjusted to be short.
摘要:
A screen in which observation distance may be adjusted while maintaining image brightness and a projection system using the screen. In a light control layer of a screen, a first angle region that determines a diffusion distribution of a reflected light is different according to the screen position in a control direction in which light diffusion control is performed. Accordingly, a diffusion distribution of image light emitted from a screen surface is adjusted to be tilted downward by an upper end and upward by a lower end according to the screen position. Thus, for example, a size of a diffused angle range is maintained to be 30°, and a direction in which the image light is diffusion-emitted corresponds to an assumed position of an observer. The projection image can be observed while maintaining brightness of an image and the observation distance L can be adjusted to be short.
摘要:
A screen which reflects light emitted from a projector includes a light diffusion layer through which light incident from a specific angular region is diffused and transmitted and through which light incident from the other angular region is transmitted straight; area pairs having a mirror forming area and a non-mirror forming area; a light transmissive layer having a back surface, on which the area pairs are disposed, and an opposite surface being bonded to a back side of the light diffusion layer; and a specular reflection film formed on a back surface of each mirror forming area. An inclination of the mirror forming area with respect to a normal line of the screen close to the projector becomes larger than the inclination of the mirror forming area far from the projector within a cross section perpendicular to the mirror forming areas inside the screen.
摘要:
A light source device includes: a light source lamp having a light-emitting tube with a discharge space and a pair of electrodes disposed in the discharge space of the light-emitting tube; a reflector extending in a substantially concave shape in section, the reflector reflecting a light beam irradiated from the light source lamp; and a sub-reflection mirror having a reflection surface that is disposed to face a reflection surface of the reflector, the sub-reflection mirror reflecting a part of the light beam irradiated from the light source lamp toward the discharge space. The light-emitting tube has a light-emitting section having the discharge space therein and sealing sections provided on both sides of the light-emitting section. The sub-reflection mirror is formed in a shape of a bowl that covers the light-emitting section of the light-emitting tube, the sub-reflection mirror having an opening for mounting the sub-reflection mirror to the light-emitting tube by allowing one of the sealing sections of the light-emitting tube to be inserted thereinto. A heat insulating member is provided to at least a part of the light-emitting section and the other one of the sealing sections of the light-emitting tube.
摘要:
A reflective mirror manufacturing method for manufacturing a reflective mirror used in an illumination device including an arc tube including a light-emitting portion and a reflective mirror including a reflective surface that reflects light from the light-emitting portion in a predetermined direction, includes: a first step of forming a tube by heating a tube including a material of the reflective mirror, thereafter putting the tube in a form block, applying internal pressure with an inert gas to cause a center portion of the tube to expand, so that part of an inner surface of the expanded center portion includes a shape corresponding to the reflective surface of the reflective mirror; a second step of cutting the tube at the center portion to form a reflective mirror member; and a third step of forming a reflective layer on an inner surface of the reflective mirror member.
摘要:
The light source device 10A has a light-emitting tube (11) (radial light source) and a reflector (12A). A cylindrical heat-conductive member (14A) is attached on an outer surface of a first sealing portion (114A) near a neck portion (121A) of a reflector (12A) in sealing portions (114) of the light-emitting tube (11). The heat-conductive member (14A) is attached along the outer surface of the first sealing portion (114A) with an end thereof being extended to a section near a light-emitting portion (113). A heat-radiation fin (15A) is attached on the other end of the heat-conductive member (14A).
摘要:
A method of manufacturing an internal grooved tube according to the present invention includes the steps of inserting a grooved plug into a blank tube rotatably, and then pressing the blank tube against the outside surface of the grooved tube with several balls revolving both around the circumference of the blank tube and on its axis in location of the grooved plug inserted, while drawing out the blank tube longitudinally in one direction, wherein the number of balls is limited to 2 to 3. A lead angle θ of the grooves to the tube axis is preferably limited to 26 to 45 degrees.
摘要:
A reflective mirror manufacturing method for manufacturing a reflective mirror used in an illumination device including an arc tube including a light-emitting portion and a reflective mirror including a reflective surface that reflects light from the light-emitting portion in a predetermined direction, includes: a first step of forming a tube by heating a tube consisting of a material of the reflective mirror, thereafter putting the tube in a form block, applying internal pressure with an inert gas to cause a center portion of the tube to expand, so that part of an inner surface of the expanded center portion includes a shape corresponding to the reflective surface of the reflective mirror; a second step of cutting the tube at the center portion to form a reflective mirror member; and a third step of forming a reflective layer on an inner surface of the reflective mirror member. For this reason, it becomes possible to manufacture, at an inexpensive manufacturing cost, a smooth reflective mirror whose surface roughness is extremely small and whose light use efficiency is high.
摘要:
In order to provide a light emitting lamp that makes it possible to control the light emitting lamp to be at a target temperature, for a light emitting lamp including a valve portion 2 and sealing portions 3a and 3b, a quantity of power-consumption-dependent heat losses due to convection and conduction of the valve portion 2, the inside diameter of the valve portion 2, and the diameter and the length of the sealing portions 3a and 3b are determined in advance, and the outside diameter of the valve portion 2 is determined on the basis of these quantity of heat losses, inside diameter of valve portion, diameter, of sealing portions, and length of sealing portions, so that an average value of inner temperatures of the light valve portion 2 at the time of luminescence falls within a range from 900 to 1000° C.
摘要:
The invention provides a structure to attach a liquid crystal panel to a prism, which enables further enhancements in cooling capabilities. The structure includes a storing member fixed on a base and holding a holding frame, where a liquid crystal panel is held. Erected pieces to form a space to receive the holding frame are formed protruding on both left and right sides at the light incident side. Protrusions to form an air path with a cross-dichroic prism are formed on both left and right sides on the light emitting side. The liquid crystal panel is attached to the cross-dichroic prism through a holding member having an opening at a portion corresponding to the panel face of the liquid crystal panel.