Abstract:
A heat-dissipation structure for a motor. The heat-dissipation structure comprises a shaft, a seat and a rotator. The rotator coupled to the seat by the shaft comprises a housing and a cover. The housing comprises an inner side connected to the shaft and a bottom comprising at least one through hole. The cover is connected to an exterior of the bottom of the housing and a distance is formed between the cover and the housing, so that the cover prevents objects from entering the through hole.
Abstract:
A connecting device of a hot swap fan module comprises at least one terminal and a casing. The at least one terminal is electrically connected to the fan so that, when the fan is mounted in a system, electrical connection is formed between the fan and the system. The connecting device further comprises at least one LED (light emitting diode) which is electrically connected to the fan or the at least one terminal for indicating the operating state of the fan, and at least one cover plate protruded from at least one edge of the casing so as to form the whole casing into an L or U-shaped structure. The casing is closely attached to one side face of the fan housing when the casing is assembled to the fan. The casing also has a recess for receiving those lead wires electrically connecting the terminals, the fan, and the LED.
Abstract:
A fan assembly is disclosed includes a guiding tube having a curved part in the middle of the guiding tube and two straight parts in both ends of the guiding tube, and a fan inclinedly assembled in the curved part of the guiding tube. One end of the guiding tube is used to be an outlet and the other is used to be an inlet. The fan is used for drawing in a gas current from the inlet and blowing the gas current out of the outlet on a heat-generating device through the curved and the straight parts of the guiding tube. Therefore, as the gas current is blown through the curved and the straight parts of the guiding tube, the gas current blown on the heat-generating device is evened so as to improve the heat-dissipating efficiency.
Abstract:
A heat dissipation module includes a first heat dissipation apparatus, a second heat dissipation apparatus, at least one first flapper and at least one second flapper. The first heat dissipation apparatus has a first airflow passage, and the second heat dissipation apparatus has a second airflow passage. The first flappers and the second flappers are separately disposed within the first airflow passage and the second airflow passage. The first flappers and the second flappers are moved to an open position due to force generated by air flowing through the first airflow passage and the second airflow passage, and are moved to a closed position after the force is removed.
Abstract:
A heat-dissipation structure for a motor. The heat-dissipation structure comprises a shaft, a seat and a rotator. The rotator coupled to the seat by the shaft comprises a housing and a cover. The housing comprises an inner side connected to the shaft and a bottom comprising at least one through hole. The cover is connected to an exterior of the bottom of the housing and a distance is formed between the cover and the housing, so that the cover prevents objects from entering the through hole.
Abstract:
The present invention discloses a cooling system for temperature control, e.g., removing heat from electronic circuits. The cooling system includes a fan and an airflow guiding system where the guiding system includes an inlet air duct for guiding the airflow to the fan. The inlet air duct includes turbulence reduction grid for separating the air duct into a plurality of isolated flow path whereby the air turbulence is reduced. In a preferred embodiment, the airflow guiding system further includes an outlet duct for incorporating the fan therein wherein the outlet portion and the fan are directed to a direction different from the inlet air duct for guiding the airflow to the fan. In another preferred embodiment, the outlet duct and the fan are directed to a direction perpendicular to the inlet air duct for guiding the airflow to the fan. And, the inlet air duct and the outlet duct are connected via a corner duct-connector having a blunted corner angle for smoothing and reducing airflow turbulence flowing there through. In another preferred embodiment, the fan having a rotational shaft hung to the corner duct-connector whereby the fan is structurally supported only on the rotational shaft for reducing air turbulence. In another preferred embodiment, the fan includes a plurality of blades wherein the blades are configured to have a bending blade surface constituting same direction screw shape for reducing airflow turbulence. In another preferred embodiment, the blades are formed with a notch at a front end of the blades to reduce a reverse flow due to air resistance for further reducing airflow turbulence. In another preferred embodiment, the inlet air duct further includes other openings for increasing a flow rate of the airflow to improve the cooling efficiency.
Abstract:
A heat-dissipation structure for a motor. The heat-dissipation structure comprises a shaft, a seat and a rotator. The rotator coupled to the seat by the shaft comprises a housing and a cover. The housing comprises an inner side connected to the shaft and a bottom comprising at least one through hole. The cover is connected to an exterior of the bottom of the housing and a distance is formed between the cover and the housing, so that the cover prevents objects from entering the through hole.
Abstract:
Disclosed is a contact device adapted to be mounted on a heat-dissipating device for hot swap in a system. The contact device includes a main body having a resilient member protruding from one side thereof, a conductive member disposed in the main body for electrically connecting the heat-dissipating device and the system, and a first engaging member disposed on the resilient member for engaging with a second engaging member of the heat-dissipating device to allow the main body to be detachably mounted on the heat-dissipating device.
Abstract:
A heat dissipation module with twin centrifugal fans is described. The heat dissipation module is utilized in an electrical equipment and especially for a computer server system. The heat dissipation module has a honeycomb panel, a first fan, an air duct, a second fan and a plurality of sliding rails. The honeycomb panel connects with an outlet of the first fan and an out of the air duct in the rear side thereof. The first fan sucks hot air from the underside thereof and exhausts the hot air to the outside through the honeycomb panel. The second fan sucks hot air from the underside thereof and exhausts the hot air to the outside through the honeycomb by way of the air duct. The sliding rails configure along the two sides of the first fan and the second fan.