摘要:
The subject invention relates to beam control prisms and the use of a beam control prism to modify the beam properties of light emitted from an edge emitting diode laser. The subject invention can utilize a beam control prism placed next to a diode laser bar. The subject beam control prism can have, for example, a curved surface and/or a high reflective coated surface for a diode laser wavelength. The curved surface can collimate the fast axis divergence and the mirror surface can change the beam direction. The subject curved surface beam control prisms can incorporate one or more features, such as parabolic reflecting surface, elliptical exit surface with flat reflecting surface, and a hyperbolic entrance surface with flat reflecting surface.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.
摘要:
The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat. The coolant can be sprayed onto the surface, for example, as a stream of liquid after being atomized, or in other ways which allow the coolant to contact the surface and absorb heat. Once the heat is absorbed by the coolant, the coolant can be transported to another location so as to transport the absorbed heat as well.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.
摘要:
The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat. The coolant can be sprayed onto the surface, for example, as a stream of liquid after being atomized, or in other ways which allow the coolant to contact the surface and absorb heat. Once the heat is absorbed by the coolant, the coolant can be transported to another location so as to transport the absorbed heat as well.
摘要:
The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface. In another specific embodiment, the heat transfer surface can incorporate surface enhancements which enhance the transfer of heat from the heat transfer surface to the external fluid. In another specific embodiment, an outer layer can be positioned above the heat transfer surface to create a volume between the heat transfer surface and the outer layer through which the external fluid can flow.