REAL-EQUIVALENT-TIME FLASH ARRAY DIGITIZER OSCILLOSCOPE ARCHITECTURE

    公开(公告)号:US20220334180A1

    公开(公告)日:2022-10-20

    申请号:US17724393

    申请日:2022-04-19

    申请人: Tektronix, Inc.

    摘要: A test and measurement system includes a clock recovery circuit configured to receive a signal from a device under test and to produce a pattern trigger signal, a flash array digitizer having an array of counters having rows and columns configured to store a waveform image representing the signal received from the device under test, a row selection circuit configured to select a row in the array of counters, and a ring counter circuit configured to receive a clock signal, select a column in the array of counters, produce end of row signals, and produce a fill complete signal upon all of the columns having been swept, the fill complete signal indicating completion of the waveform image, an equivalent time sweep logic circuit configured to receive the pattern trigger signal and the end of row signals from the ring counter and to produce the clock signal with a delay to increment a clock delay to the ring counter until the fill complete signal is received, and a machine learning system configured to receive the waveform image and provide operating parameters for the device under test. A test and measurement system includes a flash array digitizer having an array of counters having rows and columns configured to store a waveform image representing a signal received from a device under test, a row selection circuit configured to select a row in the array of counters, a column selection circuit configured to select a column in the array of counters, a sample clock connected to the row selection circuit and the column selection circuit, and a machine learning system configured to receive the waveform image from the flash array digitizer and provide operating parameters for the device under test.

    OPTICAL TRANSCEIVER TUNING USING MACHINE LEARNING

    公开(公告)号:US20220311514A1

    公开(公告)日:2022-09-29

    申请号:US17701411

    申请日:2022-03-22

    申请人: Tektronix, Inc.

    IPC分类号: H04B10/079 H04B10/077

    摘要: A test and measurement device has a connection to allow the test and measurement device to connect to an optical transceiver, one or more processors, configured to execute code that causes the one or more processors to: initially set operating parameters for the optical transceiver to average parameters, acquire a waveform from the optical transceiver, measure the acquired waveform and determine if operation of the transceiver passes or fails, send the waveform and the operating parameters to a machine learning system to obtain estimated parameters if the transceiver fails, adjust the operating parameters based upon the estimated parameters, and repeat the acquiring, measuring, sending, and adjusting as needed until the transceiver passes. A method to tune optical transceivers includes connecting a transceiver to a test and measurement device, setting operating parameters for the transceiver to an average set of parameters, acquiring a waveform from the transceiver, measuring the waveform to determine if the transceiver passes or fails, sending the waveform and operating parameters to a machine learning system when the transceiver fails, using the machine learning system to provide adjusted operating parameters, setting the operating parameters to the adjusted parameters, and repeating the acquiring, measuring, sending, using, and setting until the transceiver passes.

    SYSTEMS AND METHODS FOR TUNING AND MEASURING A DEVICE UNDER TEST USING MACHINE LEARNING

    公开(公告)号:US20240235669A1

    公开(公告)日:2024-07-11

    申请号:US18582609

    申请日:2024-02-20

    申请人: Tektronix, Inc.

    摘要: A test and measurement system includes a test and measurement instrument, including a port to receive a signal from a device under test (DUT), and one or more processors, configured to execute code that causes the one or more processors to: adjust a set of operating parameters for the DUT to a first set of reference parameters; acquire, using the test and measurement instrument, a waveform from the DUT; repeatedly execute the code to cause the one or more processors to adjust the set of operating parameters and acquire a waveform, for each of a predetermined number of sets of reference parameters; build one or more tensors from the acquired waveforms; send the one or more tensors to a machine learning system to obtain a set of predicted optimal operating parameters; adjust the set of operating parameters for the DUT to the predicted optimal operating parameters; and determine whether the DUT passes a predetermined performance measurement when adjusted to the set of predicted optimal operating parameters.

    Optical transceiver tuning using machine learning

    公开(公告)号:US11923896B2

    公开(公告)日:2024-03-05

    申请号:US17701411

    申请日:2022-03-22

    申请人: Tektronix, Inc.

    摘要: A test and measurement device has a connection to allow the test and measurement device to connect to an optical transceiver, one or more processors, configured to execute code that causes the one or more processors to: initially set operating parameters for the optical transceiver to average parameters, acquire a waveform from the optical transceiver, measure the acquired waveform and determine if operation of the transceiver passes or fails, send the waveform and the operating parameters to a machine learning system to obtain estimated parameters if the transceiver fails, adjust the operating parameters based upon the estimated parameters, and repeat the acquiring, measuring, sending, and adjusting as needed until the transceiver passes. A method to tune optical transceivers includes connecting a transceiver to a test and measurement device, setting operating parameters for the transceiver to an average set of parameters, acquiring a waveform from the transceiver, measuring the waveform to determine if the transceiver passes or fails, sending the waveform and operating parameters to a machine learning system when the transceiver fails, using the machine learning system to provide adjusted operating parameters, setting the operating parameters to the adjusted parameters, and repeating the acquiring, measuring, sending, using, and setting until the transceiver passes.