摘要:
An ultra wideband system employing a threshold to detect signal quality during acquisition wherein the threshold is adjusted based on signal characteristics such as packet traffic rate, packet loss rate, and packet loss fraction. In one embodiment, the threshold is adjusted by adjusting the gain of a variable gain stage ahead of the threshold. In another embodiment, gain and threshold are adjusted in a coordinated manner wherein gain is adjusted for low signal levels and threshold is adjusted for high signal levels. In one embodiment, packet traffic rate is evaluated over an interval based on maximum packet length, number of monitor packets, and inter-packet delay. In a further embodiment, multiple ramp builders are operated in parallel at multiple code offset values to generate signal statistics to compare with the threshold. Embodiments are disclosed wherein the thresholds are adaptively adjusted based on signal performance characteristics or the multipath environment.
摘要:
An ultra wideband system employing a threshold to detect signal quality during acquisition wherein the threshold is adjusted based on signal characteristics such as packet traffic rate, packet loss rate, and packet loss fraction. In one embodiment, the threshold is adjusted by adjusting the gain of a variable gain stage ahead of the threshold. In another embodiment, gain and threshold are adjusted in a coordinated manner wherein gain is adjusted for low signal levels and threshold is adjusted for high signal levels. In one embodiment, packet traffic rate is evaluated over an interval based on maximum packet length, number of monitor packets, and inter-packet delay. In a further embodiment, multiple ramp builders are operated in parallel at multiple code offset values to generate signal statistics to compare with the threshold. Embodiments are disclosed wherein the thresholds are adaptively adjusted based on signal performance characteristics or the multipath environment.
摘要:
A set of piconets and corresponding methods and computer programs may reduce contention time between piconets. In one embodiment, a seven-length code architecture may be used with group(s) of bands so that contention time cannot exceed 1/7 of the time. Up to seven different bands can be used within each group. When less than seven bands are used (e.g., three or six), at least one of the bands may be assigned to more than one dwell time during a time span. Alternatively, each dwell time within the time span may be assigned to a different band. The state may be changed as needed or desired. Substitution of extra bands may also be used. Using either scheme (repeated bands or changing states), a prime-number architecture can be used with a non-prime number of different bands. Simultaneous communications using at least two bands within a piconet may be used.
摘要:
A method for mitigating interference in impulse radio communication conveying a message from a transmitting station to a receiving station. The method comprises the steps of: (a) conveying the message in packets; (b) repeating conveyance of selected packets to make up a repeat package; and (c) conveying the repeat package a plurality of times at a repeat period greater than twice the occurrence period of the interference. The communication may convey a message from a proximate transmitter to a distal receiver, and receive a message by a proximate receiver from a distal transmitter. In such a system, the method comprises the steps of: (a) providing interference indications by the distal receiver to the proximate transmitter; (b) using the interference indications to determine predicted noise periods; and (c) operating the proximate transmitter to convey the message according to at least one of the following: (1) avoiding conveying the message during noise periods; (2) conveying the message at a higher power during noise periods; (3) varying error detection coding in the message during noise periods; (4) retransmitting the message following noise periods; (5) avoiding conveying the message when interference is greater than a first strength; (6) conveying the message at a higher power when the interference is greater than a second strength; (7) varying error detection coding in the message when the interference is greater than a third strength; and (8) retransmitting a portion of the message after interference has subsided to less than a predetermined strength.
摘要:
Embodiments of the present disclosure generally pertain to systems and methods for providing notifications of hazardous ground conditions in telecommunication equipment. A system in accordance with an exemplary embodiment of the present disclosure comprises a control module positioned within a chassis at a network facility. The control module communicates with a plurality of access modules through a backplane of the chassis. At least one of the modules, such as the control module, comprises a voltage sensing element, control logic, and a user interface. The voltage sensing element is configured to measure a potential voltage difference between chassis ground and digital ground and determine whether such voltage difference is hazardous. The control logic is configured to monitor the voltage sensing element and provide an alarm via the user interface when the hazardous condition is present. Accordingly, a user is notified of the hazardous condition and the likelihood of equipment damage, loss of service, and personal injury are reduced.
摘要:
Methods, systems, and apparatuses are described which are capable of mitigating interference between piconets. Devices on a piconet may detect a certain degree of interference. When this interference is deemed as arising from another piconet, the first piconet may cease transmitting on a set of bands while the interfering piconet may continue to transmit on this set of bands. Furthermore, the interfering piconet may cease transmitting on another orthogonal set of bands within the frequency spectrum while the original piconet continues to utilize these bands. Transmission on these sets of bands may be resumed after a predetermined time period. In this manner interference between the two piconets may be minimized.
摘要:
An impulse radio concurrently receives an impulse signal and interference. An interference sampler samples the interference before an expected time of arrival of an impulse in the impulse signal, to produce an interference nulling sample. Then, when the impulse arrives, a data sampler samples the impulse in the presence of the interference to produce a data sample including undesired interference energy. The anticipatory nulling sample is an estimate of the undesired interference energy captured in the subsequent data sample so that the nulling sample can be used to cancel the interference energy from the data sample. When the nulling sample precedes the data sample by an odd number of half cycle periods of the interference, the nulling sample is additively combined with the data sample to derive a corrected data sample, from which a portion of the interference energy is canceled. When the nulling sample precedes the data sample by an even number of half cycle periods of the interference, the nulling sample is subtractively combined with the data sample to derive a corrected data sample.
摘要:
A set of piconets and corresponding methods and computer programs may reduce contention time between piconets. In one embodiment, a seven-length code architecture may be used with group(s) of bands so that contention time cannot exceed 1/7 of the time. Up to seven different bands can be used within each group. When less than seven bands are used (e.g., three or six), at least one of the bands may be assigned to more than one dwell time during a time span. Alternatively, each dwell time within the time span may be assigned to a different band. The state may be changed as needed or desired. Substitution of extra bands may also be used. Using either scheme (repeated bands or changing states), a prime-number architecture can be used with a non-prime number of different bands. Simultaneous communications using at least two bands within a piconet may be used.
摘要:
A method for generating code sequences having good correlation properties comprising steps of selecting a code length comprising a number of chips, selecting a ruler which defines the position of non-zero values within the chips, and overlaying the non-zero values with an amplitude pattern.
摘要:
A method is provided for accurately determining the propagation delay of a gate under consideration in a static timing analyzer. This is accomplished by determining both the output load and input rise time of the gate under consideration. These values are then compared with a load versus rise time grid having previously determined values of propagation delay (points) for specified combinations of load and input rise time. These points are then used to interpolate a value of propagation delay for the gate under consideration by an interpolation technique that accounts for at least one of the following non-linear effects: the feed forward capacitance of a gate, soft switching, gate resistance, source and drain resistance, and/or other non-linear effects. The method accounts for each non-linear effect by imparting a corresponding component to propagation delay only in that range of output load and input rise time for which that non-linear effect is most pronounced.