摘要:
This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
摘要:
This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
摘要:
This invention relates generally to a novel method of preparing self-supporting bodies, and novel products made thereby. In its more specific aspects, this invention relates to a method for producing self-supporting bodies comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide, etc.) by reactive infiltration of molten parent metal into a preform comprising boron carbide or a boron donor material combined with a carbon donor material and, optionally, one or more inert fillers, to form the body. Specifically, a boron carbide material or combination of a boron donor material and a carbon donor material, and in either case, optionally, one or more inert fillers, are sedimentation cast, spray coated, tapped, slip cast, pressed, etc., onto or into a body and into a particular desired shape.
摘要:
This invention relates generally to a novel method of preparing self-supporting bodies, and novel products made thereby. In its more specific aspects, this invention relates to a method for producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reactive infiltration of molten parent metal into a preform comprising boron carbide or a boron donor material combined with a carbon donor material and, optionally, one or more inert fillers, to form the body. Specifically, a boron carbide material or combination of a boron donor material and a carbon donor material, and in either case, optionally, one or more inert fillers, are sedimentation cast, slip cast or pressed onto or into a body and into a particular desired shape.
摘要:
This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
摘要:
This invention relates to a method for producing a self-supporting body comprising the steps of:(a) forming a permeable mass comprising at least one solid-phase oxidant selected from the group consisting of the halogens, sulphur and its compounds, metals, metal oxides other than the silicates, and metal nitrides other than those of boron and silicon;(b) orienting said permeable mass and a source of said parent metal relative to each other so that formation of said oxidation reaction product will occur into said permeable mass;(c) heating said source of parent metal to a temperature above the melting point of said parent metal but below the melting point of said oxidation reaction product to form a body of molten parent metal;(d) reacting said body of molten parent metal with said at least one solid-phase oxidant at said temperature to permit said oxidant at said temperature to permit said oxidation reaction product to form; and(e) maintaining at least a portion of said at least one oxidation reaction product in contact with and between said molten parent metal and said solid-phase oxidant at said temperature to progressively draw molten parent metal through said oxidation reaction product towards said solid-phase oxidant to permit fresh oxidation reaction product to continue to form at an interface between said solid-phase oxidant and previously formed oxidation reaction product that has infiltrated said permeable mass.
摘要:
This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
摘要:
This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Moreover, additives, whether used alone or in combination, (1) can be admixed with the permeable mass, (2) can be mixed or alloyed with the parent metal, (3) can be placed at an interface between the parent metal and the preform or mass of filler material, (4) or any combination of the aforementioned methods, to modify properties of the resultant composite body. Particularly, additives such as VC, NbC, WC, W.sub.2 B.sub.5, TaC, ZrC, ZrB.sub.2, SiB.sub.6, SiC, MgO, Al.sub.2 O.sub.3, ZrO.sub.2, CeO.sub.2, Y.sub.2 O.sub.3, La.sub.2 O.sub.3, MgAl.sub.2 O.sub.4, HfO.sub.2, ZrSiO.sub.4, Yb.sub.2 O.sub.3 and Mo.sub.2 B.sub.5 can be combined with the permeable mass in an amount of about 5-50 percent by weight, prior to reactively infiltrating the permeable mass. Moreover, an additive may also include substantially pure elemental metals (e.g., Nb, Ti, Hf, V, Ta, Cr, Mo, Al, Cr, Si, Co and W) which may be provided by any of the methods discussed above herein.
摘要:
The present invention relates to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr composite body, by utilizing a carburization technique. Moreover, the invention relates to novel products made according to the process. The novel process modifies the residual parent metal which remains in a composite body, by exposing said residual metal to a carburizing environment. Thus, by modifying the composition of residual parent metal, the properties of the resultant composite body can also be modified. Parent metals such as zirconium, titanium, and hafnium are well suited to be treated by the carburizing process according to the present invention.
摘要:
This invention relates generally to a novel method for joining at least one first self-supporting body to at least one second self-supporting body which is similar in composition to or different in composition from said at least one first self-supporting body and to novel products which result from such joining. In some of its more specific aspects, this invention relates to different techniques for joining ceramic matrix composite bodies to other ceramic matrix composite bodies of similar characteristics and for joining ceramic matrix composite bodies to bodies which have different characteristics (e.g., metals). The ceramic matrix composite bodies of this invention are produced by a reactive infiltration of a molten parent metal into a bed or mass containing at least one of a boron source material, a carbon source material, and a nitrogen source material and, optionally, one or more inert fillers.