摘要:
There is provided an optical pickup apparatus that can obtain a stable servo signal by reducing stray light generated by diffraction in a recording layer other than a recording layer on which light is condensed. A hologram element provided in an optical pickup apparatus for recording information onto a recording medium and/or reproducing information on the recording medium by use of light includes fourth and fifth divisions where at least first-order diffracted light among diffracted light beams obtained by reflection and diffraction on a recording layer other than a light-condensed recording layer on which light is condensed by an objective lens so as not to be directed toward first and second light-receiving elements for detecting focus position information and third to eighth light-receiving elements for detecting track position information.
摘要:
For controlling a wavelength of laser light of a wavelength-variable laser (step S0), an optical system or a hologram recording medium is moved (step S1) to attain a state in which a light beam enters a wavelength control pattern. Reference light that is the laser light is applied to the wavelength control pattern (step S2). Then, a light receiving element observes reproduction light from the wavelength control pattern (step S3). A wavelength of the reference light that is the laser light is minutely changed. A quantity of the reproduction light changes with the wavelength. The quantity of the reproduction light is monitored to obtain a specific wavelength λ0 (a rotation angle of a diffraction grating 52) maximizing the quantity of the reproduction light (step S4). The wavelength of the laser light of the wavelength-variable laser light source is adjusted (step S5).
摘要:
An optical pickup device has a semiconductor laser emitting light which is in turn branched via a diffraction grating into at least three beams of light including a main beam and two sub beams which are in turn condensed via an objective lens on an optical disk at a guide groove and reflected by the optical disk to provide three reflections of light which are in turn received by detectors, each divided into two regions, respectively, to generate a tracking error signal. The diffraction grating is divided into three regions including a first region, a second region and a third region located intermediate therebetween, each having a periodical structure out of phase, the periodical structure having grating grooves in a direction determined depending on the phase of the second region to incline relative to a direction perpendicular to the guide groove of the optical disk.
摘要:
There is provided an optical pickup apparatus that can obtain a stable servo signal by reducing stray light generated by diffraction in a recording layer other than a recording layer on which light is condensed. A hologram element provided in an optical pickup apparatus for recording information onto a recording medium and/or reproducing information on the recording medium by use of light includes fourth and fifth divisions where at least first-order diffracted light among diffracted light beams obtained by reflection and diffraction on a recording layer other than a light-condensed recording layer on which light is condensed by an objective lens so as not to be directed toward first and second light-receiving elements for detecting focus position information and third to eighth light-receiving elements for detecting track position information.
摘要:
An optical pickup converts a laser beam from a semiconductor laser (1) into a parallel ray with a collimator lens (2), and divides it into a main beam (30), a sub-beam (+1st order component) (31), and a sub-beam (−1st order component) (32) with a gradient multiple-division type phase difference grating (3). After passing through a beam splitter (4), an objective lens (5) condenses the light beams on a track (61) of an optical disc (6), and the reflected light that has passed through the objective lens 5 is reflected at the beam splitter (4) and is guided into optical detectors (8A, 8B, and 8C) by a condensing lens (7). Accordingly, in a tracking error signal detecting method using the push-pull signals of the main beam and sub-beams, an offset produced by an objective lens shift or a disc tilt can be cancelled at low cost without lowering the efficiency of using light.
摘要:
The optical miniaturized module includes a semiconductor laser for irradiating an optical disk with laser light, a diffraction grating for forming a main beam and two sub beams from the laser light, a polarization hologram for dividing reflected light from the optical disk, and a photodetector for detecting the reflected light. The polarization hologram includes a first parting line defined in a direction optically corresponding to a radial direction as the optical disk rotates. A main beam M incident area is divided with a boundary defined by the first parting line. A sub beam A incident area and a sub beam B incident area are each arranged avoiding the first parting line.
摘要:
Light from a semiconductor laser is converged by an objective lens onto an optical disk, and return light thereof is directed to a light receiving element by a three-division hologram element. The light receiving element includes a two-division main light receiving region for detecting a focus error signal and sub light receiving regions respectively provided on both sides of the main light receiving region for compensating the focus error signal. Based on output signals of the above main and sub light receiving regions, a focus error signal is detected. Note that it is arranged that the sub light receiving regions receive the return light from the optical disk and hence output signals only when the objective lens defocuses being positioned outside a dynamic range. Therefore, with the use of outputs of the sub light receiving regions, the focus error signal is quickly converged to 0, when the objective lens is positioned outside the dynamic range. As a result, even during a focus servo with respect to a multilayer optical disk wherein recording layers are provided at small intervals, it is possible to obtain an accurate focalizing position of the objective lens since respective focus error signals, obtained with respect to each recording layer, do not interfere each other.
摘要:
An optical pickup includes a hologram element. The hologram element is provided with a hologram pattern including a splitting section for focus which splits light used for the detection of an FES and a splitting section for tracking which splits light used for the detection of a TES. The splitting section for tracking is formed in a region excluding a region interposed between a first virtual straight line and a second virtual straight line. The first virtual straight line is drawn on the hologram element in parallel to an X direction and passes through an optical axis of reflected light entering the hologram element in a state where the objective lens is in a neutral position, and the second virtual straight line is drawn in parallel to the first virtual straight line, while being spaced at a distance d from the first virtual straight line.
摘要:
A grating (3) including first and second regions (B1 and B2) through which the light beams, having wavelengths λ1 and λ2, respectively, pass, each of the regions including a region having diffraction grooves whose concavoconvex pitches are partially shifted so that a pattern is provided to cause each of the first and second light beams to have a partial phase shift. The pattern is set so that amplitudes of push-pull signals of the sub-beams are substantially cancelled in each of the light beams having different wavelengths. With this, it is possible to provide an optical pickup (i) having a plurality having different light sources in one package, (ii) capable of realizing low cost in the case in which the optical pickup carries out track detection using three beams with respect to any optical discs, such as DVDs and CDs, and (iii) capable of realizing simplifications of assembly adjustment and the pickup.
摘要:
An optical pickup can be provided, the optical pickup being capable of recording and playback of a plurality of optical disks having different specs by using light beams of different wavelengths, and further being suitable for integrating the semiconductor lasers and light receiving elements into a single package, by including: first and second semiconductor lasers adjacently disposed; a three-beam diffraction grating for generating three beams for tracking control; a second hologram element for diffracting light of the second semiconductor laser to guide it to a photosensor; a complex polarization beam splitter (PBS) for reflecting only light from the first semiconductor laser; and a first hologram element for diffracting light of the first semiconductor laser to guide it to the photosensor.