摘要:
An optical wavelength routing device comprises an arrayed waveguide comprising a plurality of channel waveguides formed on a substrate, a plurality of input waveguides having 12 input ports located on an input side of the arrayed waveguide, a plurality of output waveguides having 16 input ports located on an output side of the arrayed waveguide, an input slab waveguide for coupling the plurality of input waveguides to the arrayed waveguide to provide a first coupling portion on the side of the input waveguide, and an output slab waveguide for coupling the arrayed waveguide to the plurality of output waveguides to provide a second coupling portion on the side of the output waveguide, in which central wavelengths of lights input to the input ports and output from the output ports are controlled such that a difference between a predetermined wavelength and a central wavelength is suppressed within the range of +&dgr;&lgr;/4. By this structure, a maximum central wavelength difference can be suppressed at minimum.
摘要:
A four fiber ring network optical switching circuit capable of realizing the bridge function at times of the span switching and the ring switching economically by a very compact structure is disclosed. A four fiber ring network optical switching circuit is formed by a 10×8 optical matrix switch having ten input ports and eight output ports, and two branching elements adapted to branch each one of two optical signals among eight optical signals that are inputs of the four fiber ring network optical switching circuit, into two identical optical signals, and to enter the two identical optical signals into two input ports of the 10×8 optical matrix switch such that the eight optical signals are entered into the ten input ports of the 10×8 optical matrix switch as ten optical signals.
摘要:
The present invention has an object to obtain an optical signal quality supervisory device that supervises the quality of an optical signal simply, efficiently and with high accuracy without inviting an increase in cost, an increase in circuit scale and increase in power consumption. The bit rate of the optical supervisory channel is made lower than the bit rate of the optical main channel that is transmitted over an optical communication system, but the reception electric band width of a receiver that receives the optical supervisory channel is made equal to or wider than the reception electric band width of a receiver that receives the optical main channel. Also, the optical supervisory channel is made up of an SOH (section over head) frame to detect an error of the BIP (bit interleaved parity) byte of SOH, thereby supervising the quality of the optical communication system, in particular, the light wave network.
摘要:
In a signal demultiplexing device formed by a probe light source, a wavelength converter, and a wavelength demultiplexer, the probe light source is formed by a plurality of sub-probe light sources configured to respectively generate the sub-probe lights with the prescribed different wavelengths for respective time-slots, a multiplexer configured to multiplex the sub-probe lights generated by the plurality of sub-probe light sources, and a phase different giving unit configured to give phase differences corresponding to time-slot positions to the sub-probe lights multiplexed by the multiplexer, and to sequentially output the sub-probe lights with the phase differences in correspondence to respective time-slots.
摘要:
An optical switching system is implemented by providing a transmitting section with a preparatory transmitted optical signal selector and a working transmitted optical signal splitter, which are each implemented by a 1×2 optical space switch, and by providing a receiving section with a receiving optical switch which is implemented by a 2×2 optical space switch, and with a preparatory receiving optical gate which is implemented by a 1×2 optical space switch. This makes it possible to switch between the working system and preparatory system without employing any 4×4 optical space switch, thereby implementing a practical optical switching system without causing such problems as communication interruption during maintenance or impairment of transmission path working efficiency.
摘要:
In a light source for generating light containing multiple wavelengths substantially uniform in intensity, a wavelength demultiplexing element 10 (for example, waveguide-type wavelength selecting filter) demultiplexes input light into a plurality of wavelengths &lgr;1 through &lgr;32. Optical amplifiers 14-1 through 14-32 amplify outputs of the element 10 and applies them to input ports of a wavelength multiplexing element 12. The wavelength multiplexing element 12 wavelength-multiplexes their input. Output of the wavelength multiplexing element 12 is applied to a fiber coupler 16 which, in turn, applies one of its outputs to the wavelength demultiplexing element 10. The optical amplifiers 14 have a gain larger by approximately 10 dB than the loss in the optical loop made of the element 10, optical amplifier 14, element 12 and fiber coupler 16. The other output of the fiber coupler 16 is wavelength-multiplex light containing wavelengths &lgr;1 through &lgr;32.
摘要:
In a light source for generating light containing multiple wavelengths substantially uniform in intensity, a wavelength demultiplexing element 10 (for example, waveguide-type wavelength selecting filter) demultiplexes input light into a plurality of wavelengths &lgr;1 through &lgr;32. Optical amplifiers 14-1 through 14-32 amplify outputs of the element 10 and applies them to input ports of a wavelength multiplexing element 12. The wavelength multiplexing element 12 wavelength-multiplexes their input. Output of the wavelength multiplexing element 12 is applied to a fiber coupler 16 which, in turn, applies one of its outputs to the wavelength demultiplexing element 10. The optical amplifiers 14 have a gain larger by approximately 10 dB than the loss in the optical loop made of the element 10, optical amplifier 14, element 12 and fiber coupler 16. The other output of the fiber coupler 16 is wavelength-multiplex light containing wavelengths &lgr;1 through &lgr;32.
摘要:
An optical digital regenerator for digitally regenerating an input signal in an intact optical state. A first operating unit has a first probe light generator for generating a first probe light and a first optical operator for converting a waveform of the first probe light output from a first probe light generator according to an optical intensity waveform of the input signal light. A clock extractor extracts a clock component of the input signal light from a photocurrent generated by the first optical operator. A second optical operating unit has a second probe light generator for generating a second probe light pulsed in accordance with the clock output from the clock extractor and a second optical operator for sampling the second probe pulse light output from the second probe light generator.
摘要:
In a light source for generating light containing multiple wavelengths substantially uniform in intensity, a wavelength demultiplexing element 10 (for example, waveguide-type wavelength selecting filter) demultiplexes input light into a plurality of wavelengths &lgr;1 through &lgr;32. Optical amplifiers 14-1 through 14-32 amplify outputs of the element 10 and applies them to input ports of a wavelength multiplexing element 12. The wavelength multiplexing element 12 wavelength-multiplexes their input. Output of the wavelength multiplexing element 12 is applied to a fiber coupler 16 which, in turn, applies one of its outputs to the wavelength demultiplexing element 10. The optical amplifiers 14 have a gain larger by approximately 10 dB than the loss in the optical loop made of the element 10, optical amplifier 14, element 12 and fiber coupler 16. The other output of the fiber coupler 16 is wavelength-multiplex light containing wavelengths &lgr;1 through &lgr;32.
摘要:
In a light source for generating light containing multiple wavelengths substantially uniform in intensity, a wavelength demultiplexing element 10 (for example, waveguide-type wavelength selecting filter) demultiplexes input light into a plurality of wavelengths &lgr;1 through &lgr;32. optical amplifiers 14-1 through 14-32 amplify outputs of the element 10 and applies them to input ports of a wavelength multiplexing element 12. The wavelength multiplexing element 12 wavelength-multiplexes their input. Output of the wavelength multiplexing element 12 is applied to a fiber coupler 16 which, in turn, applies one of its outputs to the wavelength demultiplexing element 10. The optical amplifiers 14 have a gain larger by approximately 10 dB than the loss in the optical loop made of the element 10, optical amplifier 14, element 12 and fiber coupler 16. The other output of the fiber coupler 16 is wavelength-multiplex light containing wavelengths &lgr;1 through &lgr;32.