Abstract:
A method for ultrasound based heart rate detection in a heart rate monitoring system is provided that includes receiving a demodulated Doppler ultrasound signal, applying a bandpass filter to the demodulated Doppler ultrasound signal to remove a direct current (DC) component and out-of-band noise, wherein a filtered demodulated Doppler ultrasound signal is generated, rectifying the filtered demodulated Doppler ultrasound signal to generate a rectified filtered demodulated Doppler ultrasound signal, applying a low-pass filter to the rectified filtered demodulated Doppler ultrasound signal to filter out undesired components to leave a resulting signal corresponding to power shift due to heart rate, detecting peaks in the resulting signal, and computing a heart rate based on the detected peaks.
Abstract:
A pedometer with a three-axis accelerometer provides reliable step counts while worn on the wrist. Three-axis accelerometer data is combined into a single combined data stream. Each positive slope region around an inflection point in the combined data stream that has positive slope, a magnitude that exceeds an amplitude threshold value and that spans a time period that exceeds a time threshold value is identified. Each negative slope region around an inflection point in the combined data stream that has negative slope, a magnitude that exceeds an amplitude threshold value and that spans a time period that exceeds a time threshold value is identified. A step count is incremented for each occurrence of an identified positive slope region that is separated by an identified negative slope region as a step.
Abstract:
A pedometer with a three-axis accelerometer provides reliable step counts while worn on the wrist. Three-axis accelerometer data is combined into a single combined data stream. Each positive slope region around an inflection point in the combined data stream that has positive slope, a magnitude that exceeds an amplitude threshold value and that spans a time period that exceeds a time threshold value is identified. Each negative slope region around an inflection point in the combined data stream that has negative slope, a magnitude that exceeds an amplitude threshold value and that spans a time period that exceeds a time threshold value is identified. A step count is incremented for each occurrence of an identified positive slope region that is separated by an identified negative slope region as a step.
Abstract:
Methods for heart rate measurement based on pulse oximetry are provided that can tolerate some degree of relative displacement of a photoplethysmograph (PPG) heart rate monitor device. In some methods, artifact compensation based on a reference signal is performed on the PPG signal data to remove artifacts in the signal that may be caused, for example, by changes in ambient light and/or motion of a person wearing the monitor device. The reference signal used for artifact compensation may be generated using an LED of a complementary wavelength to that of the LED used to generate the PPG signal, or by driving an LED at a lower current than the current applied to generate the PPG signal.
Abstract:
Methods for heart rate measurement based on pulse oximetry are provided that can tolerate some degree of relative displacement of a photoplethysmograph (PPG) heart rate monitor device. In some methods, artifact compensation based on a reference signal is performed on the PPG signal data to remove artifacts in the signal that may be caused, for example, by changes in ambient light and/or motion of a person wearing the monitor device. The reference signal used for artifact compensation may be generated using an LED of a complementary wavelength to that of the LED used to generate the PPG signal, or by driving an LED at a lower current than the current applied to generate the PPG signal.
Abstract:
A heart monitor includes a single chest accelerometer (210), an analog signal conditioning and sampling section (215) responsive to said accelerometer to produce a digital signal substantially representing acceleration, and a digital processor (220) operable to filter the acceleration signal into a signal affected by body motion and to cancel the body motion signal from the acceleration signal, thereby to produce an acceleration-based cardiac-related signal. Other processes and electronic systems are also disclosed.
Abstract:
A method and apparatus for determining properties of at least one of a surface or materials adjacent to a portable device. The method includes windowing a segment of the received signal to remove an edge transients, computing the FFT power spectral density of the signal, determining a peak in the spectral energy at a frequency, finding local peaks by determining the difference in the signal amplitude is relation to a pre-determined threshold, and computing harmonic energy according to the local peaks and the difference and determining at least one property of the surface or material.
Abstract:
Methods for heart rate measurement based on pulse oximetry are provided that can tolerate some degree of relative displacement of a photoplethysmograph (PPG) heart rate monitor device. In some methods, artifact compensation based on a reference signal is performed on the PPG signal data to remove artifacts in the signal that may be caused, for example, by changes in ambient light and/or motion of a person wearing the monitor device. The reference signal used for artifact compensation may be generated using an LED of a complementary wavelength to that of the LED used to generate the PPG signal, or by driving an LED at a lower current than the current applied to generate the PPG signal.
Abstract:
A method and apparatus for monitoring heart rate. The method includes receiving a digital heart monitoring signal, determining the integrity of said signal with a “hand detect” signal that confirms electrical connection to the subject, dividing the digital heart monitoring signal into at least one frame, generating a folded correlation value for the center sample in the at least one frame, identify the number of peaks folded correlation values based on amplitude and distance parameters of the digital heart monitoring signal in the at least one frame, removing false peaks and collecting peaks corresponding to a length of time, determining the heart rate based on the identified peaks wherein the identified peaks relate to a minimum distance between valid heart beat peaks based on a heart rate estimate, computing the weighted average of heart rate value based on the number of previous heart rate values.
Abstract:
Methods for heart rate measurement based on pulse oximetry are provided that can tolerate some degree of relative displacement of a photoplethysmograph (PPG) heart rate monitor device. In some methods, artifact compensation based on a reference signal is performed on the PPG signal data to remove artifacts in the signal that may be caused, for example, by changes in ambient light and/or motion of a person wearing the monitor device. The reference signal used for artifact compensation may be generated using an LED of a complementary wavelength to that of the LED used to generate the PPG signal, or by driving an LED at a lower current than the current applied to generate the PPG signal.