Abstract:
One example of the present disclosure relates to an apparatus for processing a workpiece along a drilling axis, the apparatus comprising an end effector. The end effector comprises a pressure foot, a clamp linearly movable relative to the pressure foot along the drilling axis, and a flat angle drill linearly movable relative to the pressure foot along the drilling axis.
Abstract:
A method for processing a drilling location in a confined area of a workpiece along a drilling axis A using an end effector is disclosed. The method comprises positioning the end effector relative to the drilling location of the workpiece, clamping the workpiece between a clamp of the end effector and a pressure foot of the end effector, wherein the pressure foot supports the clamp movable relative to the pressure foot, and drilling the workpiece with a flat angle drill of the end effector.
Abstract:
A method for processing a drilling location in a confined area of a workpiece along a drilling axis A using an end effector is disclosed. The method comprises positioning the end effector relative to the drilling location of the workpiece, clamping the workpiece between a clamp of the end effector and a pressure foot of the end effector, wherein the pressure foot supports the clamp movable relative to the pressure foot, and drilling the workpiece with a flat angle drill of the end effector.
Abstract:
One example of the present disclosure relates to an apparatus for processing a workpiece along a drilling axis, the apparatus comprising an end effector. The end effector comprises a pressure foot, a clamp linearly movable relative to the pressure foot along the drilling axis, and a flat angle drill linearly movable relative to the pressure foot along the drilling axis.
Abstract:
A laser system includes a controller, a laser source, a laser scanner, and a laser containment apparatus. The laser containment apparatus includes a mounting structure for the laser scanner, a shroud assembly coupled to the mounting structure, and a seal interface coupled to the shroud assembly at an opposite end from the laser scanner. The shroud assembly surrounds a working volume of the laser scanner and includes a vacuum port connected to a vacuum source and a purge port that guides purge gas from a purge gas source toward the laser scanner. A distal end of the seal interface is formed of a pliable material that compresses to seal the shroud assembly to a target surface of a workpiece upon establishment of a negative pressure differential between a vacuum pressure inside the shroud assembly and ambient atmospheric pressure.
Abstract:
A laser system includes a controller, a laser source, a laser scanner, and a laser containment apparatus. The laser containment apparatus includes a mounting structure for the laser scanner, a shroud assembly coupled to the mounting structure, and a seal interface coupled to the shroud assembly at an opposite end from the laser scanner. The shroud assembly surrounds a working volume of the laser scanner and includes a vacuum port connected to a vacuum source and a purge port that guides purge gas from a purge gas source toward the laser scanner. A distal end of the seal interface is formed of a pliable material that compresses to seal the shroud assembly to a target surface of a workpiece upon establishment of a negative pressure differential between a vacuum pressure inside the shroud assembly and ambient atmospheric pressure.