Abstract:
A debris removal apparatus for a milling machine. In one embodiment, the debris removal apparatus includes a hollow, cylindrical suction member that attaches to a tool shaft which holds an end mill to rotate with the tool shaft. The debris removal apparatus further includes a nonrotating canister that applies a suction force to the suction member. The suction member is dimensioned to fit within a hole being cut by the end mill as the end mill is fed into the hole, and to extract debris created by the end mill via the suction force.
Abstract:
A cleaning device (100) comprises a housing (112). The cleaning device (100) also comprises a drive gear (114) that rotates about a drive-gear rotational axis (115). The cleaning device (100) further comprises driven gears (116), driven by a drive gear (114) and rotatable about corresponding driven-gear rotational axes (117) inside the housing (112). The cleaning device (100) further comprises brushes (140), located outside the housing (112) and each rotatable together with a corresponding one of the driven gears (116). The cleaning device (100) also comprises a vacuum tube (120), passing through the drive gear (114). The cleaning device (100) additionally comprises a solvent supply (130), passing through the housing (112).
Abstract:
A method of cleaning a surface includes steps of: urging brushes of a cleaning device against the surface; providing solvent to the surface via a solvent supply that passes through a housing of the cleaning device; rotating a drive gear about a drive-gear rotational axis to drive driven gears about corresponding driven-gear rotational axes inside the housing to rotate the brushes; and evacuating material from the surface via a vacuum tube, passing through the housing.
Abstract:
A combination cutting and burnishing orbital drilling tool may include an elongate tool body including a cutting end and extending along a longitudinal axis. The tool body may include a burnishing portion spaced from the cutting end and configured to induce residual stress in a side wall of a hole without removing material. The tool body may further include a cutting portion interposed between the cutting end and the burnishing portion. The cutting portion may be configured to remove material from a workpiece, thereby creating the hole, during an orbital drilling process.
Abstract:
A cutting tool for use in an orbital drilling machine may include a cutting-tool body having a longitudinal axis and a plurality of cutting edges supported on the cutting-tool body and distributed circumferentially around the cutting-tool body. Each cutting edge may extend along the longitudinal axis in a respective helix. A circumferential spacing may be defined between each pair of circumferentially adjacent cutting edges for each position of the longitudinal axis along which the cutting edges extend. The circumferential spacing between at least first and second cutting edges of the plurality of cutting edges may be different at spaced-apart first and second positions along the longitudinal axis.
Abstract:
A method of cleaning a surface includes steps of: urging brushes of a cleaning device against the surface; providing solvent to the surface via a solvent supply that passes through a housing of the cleaning device; rotating a drive gear about a drive-gear rotational axis to drive driven gears about corresponding driven-gear rotational axes inside the housing to rotate the brushes; and evacuating material from the surface via a vacuum tube, passing through the housing.
Abstract:
A cleaning device comprises a housing. The cleaning device also comprises a drive gear that rotates about a drive-gear rotational axis. The cleaning device further comprises driven gears, driven by a drive gear and rotatable about corresponding driven-gear rotational axes inside the housing. The cleaning device further comprises brushes, located outside the housing and each rotatable together with a corresponding one of the driven gears. The cleaning device also comprises a vacuum tube, passing through the drive gear. The cleaning device additionally comprises a solvent supply, passing through the housing.
Abstract:
A debris removal apparatus for a milling machine. In one embodiment, the debris removal apparatus includes a hollow, cylindrical suction member that attaches to a tool shaft which holds an end mill to rotate with the tool shaft. The debris removal apparatus further includes a nonrotating canister that applies a suction force to the suction member. The suction member is dimensioned to fit within a hole being cut by the end mill as the end mill is fed into the hole, and to extract debris created by the end mill via the suction force.
Abstract:
A combination cutting and burnishing orbital drilling tool may include an elongate tool body including a cutting end and extending along a longitudinal axis. The tool body may include a burnishing portion spaced from the cutting end and configured to induce residual stress in a side wall of a hole without removing material. The tool body may further include a cutting portion interposed between the cutting end and the burnishing portion. The cutting portion may be configured to remove material from a workpiece, thereby creating the hole, during an orbital drilling process.
Abstract:
A cutting tool for use in an orbital drilling machine may include a cutting-tool body having a longitudinal axis and a plurality of cutting edges supported on the cutting-tool body and distributed circumferentially around the cutting-tool body. Each cutting edge may extend along the longitudinal axis in a respective helix. A circumferential spacing may be defined between each pair of circumferentially adjacent cutting edges for each position of the longitudinal axis along which the cutting edges extend. The circumferential spacing between at least first and second cutting edges of the plurality of cutting edges may be different at spaced-apart first and second positions along the longitudinal axis.