Joint full wavefield inversion of P-wave velocity and attenuation using an efficient first order optimization

    公开(公告)号:US10459096B2

    公开(公告)日:2019-10-29

    申请号:US15614960

    申请日:2017-06-06

    Abstract: A method for iteratively inverting seismic data to jointly infer a model for at least P-wave velocity and attenuation parameters of the subsurface, the method including: jointly inverting the P-wave velocity and attenuation parameters with an iterative visco-acoustic full wavefield inversion process, wherein the iterative visco-acoustic full wavefield inversion process includes computing a gradient of an objective function, the objective function measuring a misfit between all or part of the seismic data and corresponding model-simulated seismic data; for each of the P-wave velocity and attenuation parameters, computing a search direction in model space from the gradient; determining line search step sizes α and β for the search directions for the P-wave velocity and attenuation parameters, respectively, wherein a ratio of the step sizes is a function of the P-wave velocity parameter; and using the step sizes α and β and the search directions for each of the P-wave velocity and attenuation parameters, computing a new search direction in model space, then performing a line search along the new search direction to arrive at a new step size, and using the new step size and the new search direction to generate an updated model for a current iteration of the iterative visco-acoustic full wavefield inversion process.

    Constructing resistivity models from stochastic inversion
    2.
    发明授权
    Constructing resistivity models from stochastic inversion 有权
    从随机反演构建电阻率模型

    公开(公告)号:US09207351B2

    公开(公告)日:2015-12-08

    申请号:US13265393

    申请日:2010-03-26

    CPC classification number: G01V3/12 G01V3/083 G01V99/00

    Abstract: Embodiments described herein use stochastic inversion (460) in lower dimensions to form an initial model (458) that is to be used in higher-dimensional gradient-based inversion (466). For example, an initial model may be formed from 1.5-D stochastic inversions, which is then processed (464) to form a 3-D model. Stochastic inversions reduce or avoid local minima and may provide an initial result that is near the global minimum.

    Abstract translation: 本文所描述的实施例使用较低维度的随机反演(460)来形成将用于基于更高维梯度的反演(466)中的初始模型(458)。 例如,初始模型可以由1.5-D随机逆转形成,然后进行处理(464)以形成3-D模型。 随机反演减少或避免局部最小值,并可能提供接近全局最小值的初始结果。

    Hydrocarbon detection with passive seismic data
    3.
    发明授权
    Hydrocarbon detection with passive seismic data 有权
    无源地震数据的烃检测

    公开(公告)号:US08923094B2

    公开(公告)日:2014-12-30

    申请号:US13140749

    申请日:2009-12-14

    CPC classification number: G01V1/28 G01V1/288 G01V11/00 G01V2210/123

    Abstract: Method for using seismic data from earthquakes to address the low frequency lacuna problem in traditional hydrocarbon exploration methods. Seismometers with frequency response down to about 1 Hz are placed over a target subsurface region in an array with spacing suitable for hydrocarbon exploration (21). Data are collected over a long (weeks or months) time period (22). Segments of the data (44) are identified with known events from earthquake catalogs (43). Those data segments are analyzed using techniques such as traveltime delay measurements (307) or receiver function calculations (46) and then are combined with one or more other types of geophysical data acquired from the target region, using joint inversion (308-310) in some embodiments of the method, to infer physical features of the subsurface indicative of hydrocarbon potential or lack thereof (26).

    Abstract translation: 采用地震数据解决传统碳氢化合物勘探方法中低频空隙问题的方法。 具有频率响应低至约1Hz的地震仪放置在具有适于烃勘探的间隔的阵列中的目标地下区域上(21)。 数据收集时间长(数周或数月)(22)。 数据(44)的分段用来自地震目录(43)的已知事件来识别。 使用诸如旅行时间延迟测量(307)或接收机功能计算(46)之类的技术分析那些数据段,然后使用在目标区域中获取的一个或多个其他类型的地球物理数据,使用联合反演(308-310) 该方法的一些实施方案,用于推断表示碳氢化合物潜力或其缺乏的地下物理特征(26)。

    Inversion of CSEM data with measurement system signature suppression
    4.
    发明授权
    Inversion of CSEM data with measurement system signature suppression 有权
    用测量系统签名抑制反演CSEM数据

    公开(公告)号:US08239181B2

    公开(公告)日:2012-08-07

    申请号:US12465932

    申请日:2009-05-14

    CPC classification number: G01V3/12

    Abstract: A method for suppressing measurement system signature, or artifacts, that arise when controlled source electromagnetic survey data are inverted to obtain a resistivity image of a subsurface region. The method involves identifying regions (47) where the image has low or rapidly varying sensitivity to data acquired by a given receiver, typically regions close to and under the given receiver. Then, in the iterative inversion process where a resistivity model is updated to minimize an objective function, the model update is modified (48) to reduce the impact of such low sensitivity regions on the update.

    Abstract translation: 当控制源电磁勘测数据被反转以获得地下区域的电阻率图像时,产生抑制测量系统特征或伪像的方法。 该方法包括识别区域(47),其中图像具有低或快速变化的灵敏度,其由给定接收器(通常在给定接收器附近和之下的区域)获取的数据。 然后,在更新电阻率模型以最小化目标函数的迭代反演过程中,修改模型更新(48)以减少这种低灵敏度区域对更新的影响。

    Poynting Vector Minimal Reflection Boundary Conditions
    6.
    发明申请
    Poynting Vector Minimal Reflection Boundary Conditions 审中-公开
    坡印矢量最小反射边界条件

    公开(公告)号:US20160223697A1

    公开(公告)日:2016-08-04

    申请号:US14887621

    申请日:2015-10-20

    Abstract: A method for exploring for hydrocarbons, including: simulating a seismic waveform, using a computer, wherein computations are performed on a computational grid representing a subsurface region, said computational grid using perfectly matched layer (PML) boundary conditions that use an energy dissipation operator to minimize non-physical wave reflections at grid boundaries; wherein, in the simulation, the PML boundary conditions are defined to reduce computational instabilities at a boundary by steps including, representing direction of energy propagation by a Poynting vector, and dissipating energy, with the dissipation operator, in a direction of energy propagation instead of in a phase velocity direction; and using the simulated waveform in performing full waveform inversion or reverse time migration of seismic data, and using a physical property model from the inversion or a subsurface image from the migration to explore for hydrocarbons.

    Abstract translation: 一种用于探索碳氢化合物的方法,包括:使用计算机模拟地震波形,其中在表示地下区域的计算网格上执行计算,所述计算网格使用完全匹配层(PML)边界条件,其使用能量耗散算子 最小化网格边界处的非物理波反射; 其中,在模拟中,定义了PML边界条件以减少边界处的计算不稳定性,所述步骤包括表示坡坡廷矢量的能量传播方向,以及耗散算子在能量传播方向上耗散能量,而不是 在相速度方向上; 并使用模拟波形进行地震数据的全波形反演或反向时间偏移,并使用来自反演的物理性质模型或来自迁移的地下图像来探索碳氢化合物。

    Efficient computation of wave equation migration angle gathers
    7.
    发明授权
    Efficient computation of wave equation migration angle gathers 有权
    有效计算波动方程迁移角度

    公开(公告)号:US08965059B2

    公开(公告)日:2015-02-24

    申请号:US13640291

    申请日:2011-04-22

    Abstract: Method for efficient computation of wave equation migration angle gathers by using multiple imaging conditions. Common reflection angle or common azimuth gathers or gathers including both common reflection angles and common azimuth angles are produced as the data are migrated. In the course of either wave equation migration or reverse time migration, the pressures and particle motion velocities that need to be computed are sufficient to also compute the Poynting vector pointing in the direction of source-side (35) or receiver-side (37) wavefield propagation. From that, the reflection and azimuth angles can be computed (38). The seismic images can then be stored in the appropriate angle bins, from which common reflection angle or azimuth data volumes can be assembled (39).

    Abstract translation: 通过使用多个成像条件,有效计算波动方程偏移角的方法。 当数据迁移时,产生共同的反射角或共同的方位收集或聚集,包括共同的反射角和共同的方位角。 在波动方程迁移或反向时间迁移过程中,需要计算的压力和粒子运动速度足以计算指向源侧(35)或接收侧(37)方向的坡印廷矢量, 波场传播。 由此可以计算出反射和方位角(38)。 然后可以将地震图像存储在适当的角度仓中,从中可以组装共同的反射角度或方位角数据体积(39)。

    Joint Full Wavefield Inversion of P-Wave Velocity and Attenuation Using an Efficient First Order Optimization

    公开(公告)号:US20180017690A1

    公开(公告)日:2018-01-18

    申请号:US15614960

    申请日:2017-06-06

    CPC classification number: G01V1/282 G01V1/303 G01V1/368 G06F17/11

    Abstract: A method for iteratively inverting seismic data to jointly infer a model for at least P-wave velocity and attenuation parameters of the subsurface, the method including: jointly inverting the P-wave velocity and attenuation parameters with an iterative visco-acoustic full wavefield inversion process, wherein the iterative visco-acoustic full wavefield inversion process includes computing a gradient of an objective function, the objective function measuring a misfit between all or part of the seismic data and corresponding model-simulated seismic data; for each of the P-wave velocity and attenuation parameters, computing a search direction in model space from the gradient; determining line search step sizes α and β for the search directions for the P-wave velocity and attenuation parameters, respectively, wherein a ratio of the step sizes is a function of the P-wave velocity parameter; and using the step sizes α and β and the search directions for each of the P-wave velocity and attenuation parameters, computing a new search direction in model space, then performing a line search along the new search direction to arrive at a new step size, and using the new step size and the new search direction to generate an updated model for a current iteration of the iterative visco-acoustic full wavefield inversion process.

    METHOD FOR FAST LINE SEARCH IN FREQUENCY DOMAIN FWI
    9.
    发明申请
    METHOD FOR FAST LINE SEARCH IN FREQUENCY DOMAIN FWI 审中-公开
    频域搜索的方法

    公开(公告)号:US20150293261A1

    公开(公告)日:2015-10-15

    申请号:US14657962

    申请日:2015-03-13

    CPC classification number: G01V99/00 G06F17/12 G06F17/5009

    Abstract: Method for rapidly computing updates to frequency-domain seismic wave fields by utilizing a matrix perturbation approach. The method speeds up model (e.g., velocity) parameter estimation by iterative inversion of measured seismic data (21-27). The method applies to the line search where the optimal size of the model update is estimated by testing different size updates to see which one generates the minimum objective function. By treating the model update as a perturbation, perturbation theory is used to relate the model perturbation to a corresponding wavefield perturbation (35). Thus, the Helmholtz equation is solved only once per iteration cycle (22).

    Abstract translation: 通过利用矩阵扰动方法快速计算频域地震波场更新的方法。 该方法通过测量的地震数据的迭代反演来加速模型(例如,速度)参数估计(21-27)。 该方法适用于通过测试不同大小更新来估计模型更新的最佳大小以查看哪个生成最小目标函数的行搜索。 通过将模型更新视为扰动,使用扰动理论将模型扰动与相应的波场扰动相关(35)。 因此,亥姆霍兹方程仅在迭代循环中解决一次(22)。

    FREQUENCY-DOMAIN AUGMENTED TIME-DOMAIN FULL WAVEFIELD INVERSION
    10.
    发明申请
    FREQUENCY-DOMAIN AUGMENTED TIME-DOMAIN FULL WAVEFIELD INVERSION 审中-公开
    频域支持时域全波形反演

    公开(公告)号:US20150293246A1

    公开(公告)日:2015-10-15

    申请号:US14656389

    申请日:2015-03-12

    Abstract: A basically time-domain method for performing full wavefield inversion of seismic data to infer a subsurface physical property model (61), where however at least one quantity required for the inversion, such as the Hessian of the cost function, is computed in the frequency domain (64). The frequency-domain quantity or quantities may be obtained at only a few discrete frequencies (62), preferably low frequencies, and may be computed on a coarse spatial grid, thus saving computing time with minimal loss in accuracy. For example, the simulations of predicted data and the broadband gradient of the objective function may be computed in the time domain (67), and the Hessian matrix, approximated by its diagonal, may be computed in the frequency domain. It may be preferable to use time-domain and the frequency-domain solvers that employ different numerical schemes, such as finite-difference method, one-way wave equation, finite-element method (63).

    Abstract translation: 用于执行地震数据的全波场反演以推断地下物理属性模型(61)的基本时域方法(61),然而,在频率中计算反演所需的至少一个数量,例如成本函数的Hessian 域(64)。 可以仅在几个离散频率(62),优选低频率处获得频域量或量,并且可以在粗略的空间网格上计算,从而以最小的精度损失节省计算时间。 例如,可以在时域(67)中计算目标函数的预测数据和宽带梯度的模拟,并且可以在频域中计算由其对角线近似的Hessian矩阵。 使用有限差分法,单向波动方程,有限元法(63),采用不同数值方案的时域优化和频域求解器。

Patent Agency Ranking