摘要:
A method for exploring for hydrocarbons, including: simulating a seismic waveform, using a computer, wherein computations are performed on a computational grid representing a subsurface region, said computational grid using perfectly matched layer (PML) boundary conditions that use an energy dissipation operator to minimize non-physical wave reflections at grid boundaries; wherein, in the simulation, the PML boundary conditions are defined to reduce computational instabilities at a boundary by steps including, representing direction of energy propagation by a Poynting vector, and dissipating energy, with the dissipation operator, in a direction of energy propagation instead of in a phase velocity direction; and using the simulated waveform in performing full waveform inversion or reverse time migration of seismic data, and using a physical property model from the inversion or a subsurface image from the migration to explore for hydrocarbons.
摘要:
A method for exploring for hydrocarbons, including: simulating a seismic waveform, using a computer, wherein computations are performed on a computational grid representing a subsurface region, said computational grid using perfectly matched layer (PML) boundary conditions that use an energy dissipation operator to minimize non-physical wave reflections at grid boundaries; wherein, in the simulation, the PML boundary conditions are defined to reduce computational instabilities at a boundary by steps including, representing direction of energy propagation by a Poynting vector, and dissipating energy, with the dissipation operator, in a direction of energy propagation instead of in a phase velocity direction; and using the simulated waveform in performing full waveform inversion or reverse time migration of seismic data, and using a physical property model from the inversion or a subsurface image from the migration to explore for hydrocarbons.
摘要:
Method for correcting seismic simulations, RTM, and FWI for temporal dispersion due to temporal finite difference methods in which time derivatives are approximated to a specified order of approximation. Computer-simulated seismic data (51) are transformed from time domain to frequency domain (52), and then resampled using a mapping relationship that maps, in the frequency domain, to a frequency at which the time derivative exhibits no temporal dispersion (53), or to a frequency at which the time derivative exhibits a specified different order of temporal dispersion. Alternatively, measured seismic data from a field survey (61) may have temporal dispersion of a given order introduced, by a similar technique, to match the order of approximation used to generate simulated data which are to be compared to the measured data.
摘要:
Method for correcting seismic simulations, RTM, and FWI for temporal dispersion due to temporal finite difference methods in which time derivatives are approximated to a specified order of approximation. Computer-simulated seismic data (51) are transformed from time domain to frequency domain (52), and then resampled using a mapping relationship that maps, in the frequency domain, to a frequency at which the time derivative exhibits no temporal dispersion (53), or to a frequency at which the time derivative exhibits a specified different order of temporal dispersion. Alternatively, measured seismic data from a field survey (61) may have temporal dispersion of a given order introduced, by a similar technique, to match the order of approximation used to generate simulated data which are to be compared to the measured data.
摘要:
Method for reconstructing subsurface profiles for seismic velocity or other geophysical properties from recorded seismic data. In one embodiment, a starting model of seismic velocity is assumed (10). The computational domain is divided into two (or more) subdomains by horizontal planes based on an analysis of velocity model (30), and the allowed maximum grid size for each subdomain is determined (50). Auxiliary perfectly matched layers (PML's) are attached to each planar interface between subdomains (80), e.g. two PML's on each side of the interface between the coarse and fine subdomains. Simulated seismic data are computed using the SG-DO technique (100-230). The simulated seismic data are compared to the recorded seismic data, then the residual is calculated (240) and used to update the model (320). The method may be iterated until the model is suitably converged (260).
摘要:
A method for generating seismic attribute gathers, the method including: computing, with a computer, seismic images with a field dataset; generating, with a computer, synthetic data corresponding to the seismic images; computing, with a computer, an attribute volume by applying an expectation method to the synthetic data; mapping, with a computer, the attribute volume to the seismic images; and generating, with a computer, seismic attribute gathers by stacking the seismic images mapped to the attribute volume.
摘要:
A method for generating seismic attribute gathers, the method including: computing, with a computer, seismic images with a field dataset; generating, with a computer, synthetic data corresponding to the seismic images; computing, with a computer, an attribute volume by applying an expectation method to the synthetic data; mapping, with a computer, the attribute volume to the seismic images; and generating, with a computer, seismic attribute gathers by stacking the seismic images mapped to the attribute volume.
摘要:
Method for generating an effective, efficient, and stable absorbing boundary condition in finite-difference calculations, such as model-simulation of predicted seismic data. The top surface and optionally the bottom surface of the computational domain or grid are treated with one or more layers of PML (51), preferably 1D PML, assuming an orthorhombic medium in the PML implementation (52). The side surfaces are handled with one or more ABC layers (53). Further advantages may be realized by tapering earth model symmetry axis on the top and bottom of the model toward the vertical (54). The invention provides a beneficial compromise between reducing artifacts in the image or physical property model and computational efficiency and stability.
摘要:
Method for generating an effective, efficient, and stable absorbing boundary condition in finite-difference calculations, such as model-simulation of predicted seismic data. The top surface and optionally the bottom surface of the computational domain or grid are treated with one or more layers of PML (51), preferably 1D PML, assuming an orthorhombic medium in the PML implementation (52). The side surfaces are handled with one or more ABC layers (53). Further advantages may be realized by tapering earth model symmetry axis on the top and bottom of the model toward the vertical (54). The invention provides a beneficial compromise between reducing artifacts in the image or physical property model and computational efficiency and stability.
摘要:
Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.