摘要:
The invention relates to a method for data processing. At stage 3 the position of the reference object in the reference image and its relation to a set of reference landmarks in the reference image is established at step 6. In order to enable this, the reference imaging of learning examples may be performed at step 2 and each reference image may be analyzed at step 4, the results may be stored in a suitably arranged database. In order to process the image under consideration, the image is accessed at step 11, the suitable landmark corresponding to the reference landmark in the reference image is identified at step 13 and the spatial relationship established at step 6 is applied to the landmark thereby providing the initial position of the object in the actual image. In case when for the object an imaging volume is selected, the method 1 according to the invention follows to step 7, whereby the scanning 17 is performed within the boundaries given by the thus established scanning volume. In case when for the object a model representative of the target is selected, the method 1 follows to the image segmentation step 19, whereby a suitable segmentation is performed. In case when for the model a deformable model is selected, the segmentation is performed by deforming the model thereby providing spatial boundaries of the target area. The invention further relates to an apparatus and a computer program for image processing.
摘要:
In a diagnostic imaging system (10), a user interface (82) facilitates viewing of 4D kinematic data sets. A set of reference points is selected in a first 3D image to designate an anatomical component. An algorithm (104) calculates a propagation of the selected reference points from the first 3D image into other 3D images. Transforms which describe the propagation of the reference points between 3D images are defined. An aligning algorithm (112) applies inverse of the transforms to the 3D images to define a series of frames for the video processor (120) to display, in which frames the designated anatomical component defined by the reference points in each of the 3D images remains fixed while the other portions of the anatomical region of interest move relative to the fixed designated anatomical component.
摘要:
The present invention relates to a method and a corresponding apparatus for visualization of a tubular structure of an object by use of a 3D image data set of said object. In order to provide a more efficient and illustrative visualization a method is proposed comprising the steps of: —generating and visualising a curved planar reformation view (C) from a symbolic pathway view (B) of said tubular structure, said symbolic pathway view (B) representing said tubular structure and the pathway points of said symbolic pathway being assigned with their 3D spatial position data, and —generating and visualising at least one planar view (O) of said object (1) through a viewing point (V) of said tubular structure selected in said curved planar reformation view (C) or said symbolic pathway view (B).
摘要:
A method for creating a model of a part of the anatomy from the scan data of several subjects is described. The method comprises the steps of collecting scan data; applying a feature detector to the scan data; converted the output of the feature detector into a common reference system; and accumulating the converted data to generate the model. It is therefore possible for the method to generate a model from the scan data of several subjects automatically. The method may also include an optional step of receiving user input to select which of the accumulated data should be included in the final model. This user input requires much less effort than manual contouring and is substantially independent of the number of subjects used to create the model.
摘要:
In a computer-assisted visualization of a three-dimensional anatomical object, two or more diagnostic image data records (1, 3, 4, 5) of the object are recorded. Thereafter, an imaging specification is defined for imaging the image data (1, 3, 4, 5) onto a two-dimensional display plane (8). In order to define the imaging specification, anatomical features (2) of the object are identified in at least one of the image data records (1). Finally, a combined two-dimensional representation is calculated by imaging the two or more image data records (1, 3, 4, 5) according to the previously defined imaging specification onto a common display plane (8).
摘要:
A digital processing device (14, 14′) has first and second independent communication links with a local medical information system (10) and an Internet-based electronic health record (EHR) account (12) of an individual, respectively. The digital processing device presents a first window (W1) indicating content pertaining to the individual stored at the local medical information system and a second window (W2) indicating content stored at the EHR account. A selection (D1, D2, S4, S14) of content to transfer from the EHR account of the individual to the local medical information system or vice versa is received. The selected content is transferred via one of the first or second communication link to an isolation container (50) at the digital processing device, and is transferred via the other of the first or second communication link from the isolation container to the destination local medical information system or EHR account.
摘要:
A function generator (MFG) formulates a query to a mapping database (DBM) based on a received planning geometry type (PGT) and receives corresponding function data (MFD) which is processed to create a function (MF). An evaluator (ELV) receives the function (MF) and an anatomical landmark set (LMS) and determines a computed planning geometry (CPG). A user interface (UI) displays a survey image (IMG), the landmark set (LMS), and the computer planning geometry (CPG) and allows the user to adjust the landmark set and/or the computer program geometry. A record generator (RG) creates a new record from the user adjusted landmarks (ULMS) and the user adjusted computer planning geometries (UPG) and loads the new records (NR) into the mapping database (DBM).
摘要:
The invention relates to a method 1 of image segmentation where in step 2 a prior model representative of a structure conceived to be segmented in an image is accessed. Preferably, the image comprises a medical diagnostic image. Still preferably, the medical diagnostic image is prepared in a DICOM format, whereby supplementary information is stored besides diagnostic data. In these cases the method 1 according to the invention advantageously proceeds to step 3, where the supplementary information is extracted from electronic file 5, comprising for example suitable patient-related information 5a and/or suitable structure-related information 5b. Examples of the patient-related information comprise a patient's age, sex, group, etc., whereas examples of the structure-related information may comprise an anatomic location of the structure, such as rectum, bladder, lung etc, or the suspected/diagnosed pathology of the patient. In an alternative embodiment of the method 1 according to the invention, the supplementary information is provided by a human operator in step 7, where he can enter suitable supplementary information 9a, 9b using a user interface 9. When the supplementary information is loaded, the method 1 according to the invention proceeds to step 4 in which the prior model is being changed using the supplementary information yielding a further model. In step 6 the method 1 performs the image segmentation using the thus obtained further model and in step 8 the results of the segmentation step may be visualized on a suitable viewer.
摘要:
A method of data processing is provided for estimating a position of an object in an image from a position of a reference object in a reference image. The method includes learning the position of the reference object in the reference image and its relation to a set of reference landmarks in the reference image, accessing the image, accessing the relation between the position of the reference object and the set of the reference landmarks, identifying a set of landmarks in the image corresponding to the set of the reference landmarks, and applying the relation to the set of landmarks in the image for estimating the position of the object in the image.
摘要:
A method is arranged to segment a surface in a multi-dimensional dataset comprising a plurality of images. Data processing and data acquisition steps can be temporally or geographically distanced, so that the results of a suitable data segmentation are accessed. Next, suitable plurality of image features resembling possible spatial positions of the surface conceived to be segmented are selected and accessed. The features are subsequently matched for all image portions, whereby for each feature a matching error is assigned. A pre-defined selectivity factor is accessed defining a maximum allowable variable fraction of the features having largest matching errors which can be discarded. The segmentation of the sought surface is performed, whereby the discarded features are not taken into account for evaluating the quality of fit of a candidate deformation. The resulting surface is displayed on a suitable display means.