Abstract:
A luminal drilling system includes a drilling device and a control unit. The drilling device includes an elongate member having a drive shaft with a drill tip. The control unit includes a motor connectable to the drive shaft and control circuitry which rotationally oscillates the drive shaft with the direction of rotation automatically reversing whenever the load on the motor and/or drive shaft exceeds a threshold value.
Abstract:
The present invention provides a porous structure that works very effectively to seal a puncture site with optimum porosity, absorbent capacity and perfect anatomical fit. The plug density and other fiber properties/geometry (total denier; number of filaments; etc) have provided an efficient structure that allows instantaneous absorption of blood during deployment. The final size of the plug with absorbed fluids provides an anatomical fit and seals the puncture site within few minutes after deployment.
Abstract:
A luminal drilling system includes a drilling device and a control unit. The drilling device includes an elongate member having a drive shaft with a drill tip. The control unit includes a motor connectable to the drive shaft and control circuitry which rotationally oscillates the drive shaft with the direction of rotation automatically reversing whenever the load on the motor and/or drive shaft exceeds a threshold value.
Abstract:
The present invention is directed to a device which is capable of both locating a punctured blood vessel wall and sealing the puncture in the vessel and to the method of using the device as well. In one embodiment, the device includes an elongate deployment member having a sealing element releasably disposed within a distal end thereof, said deployment member being coupled to a first actuator configured to retract said deployment member relative to said sealing element, and an elongated indicator member having a proximal end and a distal end, said indicator member extending through a lumen in said deployment member such that the distal end of said indicator member extends distally of the distal end of the deployment member, and said indicator member being coupled to a second actuator configured to retract said indicator member relative to said deployment member.
Abstract:
This invention relates to apparatus and methods for use in sealing a vascular puncture site, particularly sites of punctures that are the result of catheterization or other interventional procedures. In several of the preferred embodiments, the sealing device includes a sealing member and a tether. The sealing member generally performs the function of occupying a space in an incision, puncture, or other wound and sealing the space in the incision, puncture, or wound that it occupies, to prevent further blood flow. The tether is typically attached in some manner to the sealing member, and provides the user with the ability to withdraw the sealing member if necessary. In a particularly preferred form, the sealing device further includes a restraining member associated with the sealing member. The restraining member provides the ability to more securely restrain the sealing member to prevent it from migrating from the deployment location within a tissue tract. The restraining member may also provide an additional capability of manipulating the sealing member after deployment.
Abstract:
Body lumens such as blood vessels are selectively occluded by mechanically collapsing the blood vessel and subsequently applying energy or other occlusive conditions within or adjacent the collapsed region. For example, vessel collapsing mechanisms can include spreadable opposed elements, reciprocating jaw mechanisms having penetrating elements, and devices for applying negative pressure to collapse the blood vessel. One or more electrodes can be used in a monopolar or bipolar fashion to apply radiofrequency or other energy to the body lumen in the region where it has been collapsed.
Abstract:
Body lumens such as blood vessels are selectively occluded by mechanically collapsing the blood vessel and subsequently applying energy or other occlusive conditions within or adjacent the collapsed region. For example, vessel collapsing mechanisms can include spreadable opposed elements, reciprocating jaw mechanisms having penetrating elements, and devices for applying negative pressure to collapse the blood vessel. One or more electrodes can be used in a monopolar or bipolar fashion to apply radiofrequency or other energy to the body lumen in the region where it has been collapsed.
Abstract:
This invention relates to apparatus and methods used to seal a vascular puncture site, particularly sites of punctures that are the result of catheterization or other interventional procedures. The sealing device includes a sealing member and a tether. The sealing member occupies a space in an incision, puncture, or other wound and sealing the space that it occupies, to prevent further blood flow. The tether is attached to the sealing member, and provides the user with the ability to withdraw the sealing member if necessary. The sealing device further includes a restraining member associated with the sealing member. The restraining member provides the ability to more securely restrain the sealing member to prevent it from migrating from the deployment location within a tissue tract. The restraining member also provides an additional capability of manipulating the sealing member after deployment.
Abstract:
The present invention provides a porous structure that works very effectively to seal a puncture site with optimum porosity, absorbent capacity and perfect anatomical fit. The plug density and other fiber properties/geometry (total denier; number of filaments; etc) have provided an efficient structure that allows instantaneous absorption of blood during deployment. The final size of the plug with absorbed fluids provides an anatomical fit and seals the puncture site within few minutes after deployment.
Abstract:
Body lumens such as blood vessels are selectively occluded by applying radiofrequency voltage to a vaso-occlusive coil (100) at the target site (TS) and generating a thermal reaction to induce fibrogenic occlusion of the blood vessel (BV) around the vaso-occlusive coil. The radiofrequency current is usually sufficient to induce thermal damage to the luminal wall and to coagulate the surrounding blood, thereby initiating clotting and subsequent fibrosis to permanently occlude the lumen. The invention also includes a method for endoluminally deploying the vaso-occlusive coil and preventing migration of the coil from of the target site.