摘要:
An X-ray inspection system is provided comprising an X-ray source which includes an electron gun and beam steering means for alternately directing the electron beam from the gun in a first direction wherein the beam strikes the anode to produce a beam of X-rays which exits the X-ray source, and in a second direction wherein no significant X-ray flux exits the X-ray source. An X-ray detector and means for reading the detector are also provided. The beam steering means and the detector reading means are coordinated so that the detector output is read during a period when no significant X-ray flux exits the source. A method for operating the X-ray inspection system is also provided.
摘要:
An energy discrimination radiography system includes at least one radiation source configured to alternately irradiate a component with radiation characterized by at least two energy spectra, where the component has a number of constituents. At least one radiation detector is configured to receive radiation passing through the component and a computer is operationally coupled to the detector. The computer is configured to receive data corresponding to each of the energy spectra for a scan of the component, process the data to generate a multi-energy data set, and decompose the multi-energy data set to generate material characterization images in substantially real time. A method for inspecting the component includes irradiating the component, receiving a data stream of energy discriminated data, processing the energy discriminated data, to generate a multi-energy data set, and decomposing the multi-energy data set, to generate material characterization images in substantially real time.
摘要:
An NDE test data record management system is provided. The test data record management system can include a format conversion server, a local archiving server, a cataloging server, an image and data cache server, and an image query and review station.
摘要:
An X-ray inspection system includes an X-ray source that generates more than one beam defining an inspection plane, the beams being substantially parallel to each other; an X-ray detector having a plurality of detector arrays, each of which is aligned with one of the beams, and structure for supporting an object between the X-ray source and the X-ray detector. The X-ray source includes an electron gun and a device for steering an electron beam generated by the gun to multiple focal spots on a target.
摘要:
A radiographic inspection system includes an electron gun, a fixed anode of a dense material, and apparatus for steering an electron beam generated by the electron gun to multiple focal spots on the anode. A detector includes a plurality of individual detector elements. Operation of the system includes is carried out by directing the electron beam at a first time interval to a first focal spot on the anode, generating a first X-ray beam aligned with a first detector element. During a second time interval, the electron beam is directed to a second focal spot on the anode, spaced-away from the first focal spot, generating a second X-ray beam aligned with a second detector element. This cycle is repeated with additional focal spots in a one-dimensional or two-dimensional pattern. The detector element output is read in coordination with the position of the electron beam.
摘要:
A method for aligning a radiographic inspection system includes providing a radiation source capable of emitting a beam pattern, positioning a detector to receive radiation emitted from the radiation source, and causing the radiation source to emit the beam pattern. The detector is used to determine the distribution of flux intensity of the beam pattern. A two-dimensional or three-dimensional map of the beam pattern may be stored. The system is aligned by positioning the radiation source and the detector with reference to the map, so that the detector is disposed at a predetermined location within the beam pattern.
摘要:
A system for radiographic inspection of an object includes a radiation source located on one side of the object and a radiation detector located on another side of the object, being positioned to receive radiation from the radiation source. At least one motion sensor is associated with the radiation detector, the radiation source, or the object, for detecting motion. The magnitude of motion of the components is compared to a pre-established limit value. The imaging process is conducted when the magnitude of any motion is less than the limit value.
摘要:
A method of radiographic inspection of an object includes the steps of: providing a radiation source and a radiation detector located on opposite sides of the object; positioning the radiation detector to receive radiation transmitted through the object from the radiation source; radiographically imaging an region of interest of the object with the radiation source and the radiation detector, using an set of initial imaging parameters, to produce a test image; obtaining at least one quality measurement of the test image; comparing the quality measurement to predetermined image quality limits; and in response to the quality measurement exceeding the predetermined image quality limits, changing at least one of the initial imaging parameters to generate a new set of image parameters. The process may be repeated iteratively until a final set of imaging parameters is obtained.
摘要:
An X-ray inspection system is provided having an X-ray source and first and second collimators. The first and second collimators are arranged in relation to the source and the target such that the portion of the target actually illuminated by The X-ray beam is substantially equal to the size of a selected inspection zone.
摘要:
A system and method for radiographic inspection of an aircraft fuselage includes a radiation source located on one side of the fuselage and a plurality of radiation detectors located on another side of the fuselage. The system includes manipulators for moving the radiation source and the radiation detectors in a coordinated fashion. Radiation detected by the radiation detectors is processed to display stereoscopic images of areas of interest of the fuselage. The radiation source and detector positions are manipulated to obtain multiple sets of images from different viewing angles. The multiple sets of images are used to produce the stereoscopic images.