摘要:
Optical and thermal splines are integrated in the external envelope of a non-planar lamp allowing the optical output of discrete light sources such as LEDs to be distributed for uniform output and the achievement of desired light distributions such as omnidirectional output. Integrated thermal splines and perimeter location of light sources allow for improved thermal management without significantly compromised optical performance.
摘要:
Optical and thermal splines are integrated in the external envelope of a non-planar lamp allowing the optical output of discrete light sources such as LEDs to be distributed for uniform output and the achievement of desired light distributions such as omnidirectional output. Opposing orientation of light sources is utilized to create integrated optical and thermal splines for improved thermal and optical performance.
摘要:
Designs for collimating optical elements and assemblies are provided which are fabricated by a subtractive process using lasers or other tools to create embedded void spaces that provide reflecting walls for internally reflective optical elements. The designs have advantages in cost, reduced development time, and performance. Light from multiple light sources can be mixed and collimated. Some embodiments provide the ability to integrate a large number of internally reflective optics into a single component and very large components can be made. Embodiments are designed for manufacturing and can be made without molding tooling.
摘要:
An enhanced light fixture containing a volumetric diffuser to control the spatial luminance uniformity and angular spread of light from the light fixture is disclosed. The volumetric diffuser provides increased spatial luminance uniformity and efficient control over the illuminance such that power reductions, reduced cost or reduced size may be achieved. The volumetric diffuser contains one or more regions of volumetric light scattering particles. The spread of illumination of light from a light emitting source can be efficiently controlled by using a thin, low cost, volumetric, diffuser to direct the light in the desired direction. This allows the reduction in number of light sources, a reduction in power requirements, or a more tailored illumination. When the volumetric diffuser is used in combination with a waveguide to extract light, the light is efficiently coupled out of the waveguide in a thin, planar surface. This transmissive diffuser can be coupled to a reflecting element such that the resulting combination is a light reflecting element with a desired light scattering profile.
摘要:
Designs and manufacturing methods are provided for lighting components and systems with improved performance in luminous efficacy, total lumen output, product lifetime, and form factor through the use of optical composites with improved thermal management. Some embodiments also provide designs and manufacturing methods to minimize thermal warpage and increase the rigidity of optical films and sheets through improved balance of thermal stresses.
摘要:
Alternative methods of designing, developing and manufacturing optical elements and assemblies are provided which enable improvements in effectiveness and efficiency. Subtractive processes using lasers or other tools are utilized to create embedded void spaces that provide reflecting walls within internally reflective optical elements. The designs have advantages in cost, reduced development time, and performance. Light from multiple light sources can be mixed and collimated. Some embodiments provide the ability to integrate a large number of internally reflective optics into a single component and very large components can be made. Embodiments of the invention are designed for manufacturing and can be made without molding tooling.
摘要:
The present invention provides a polarization-sensitive light homogenizer and a backlight and display using the same. The homogenizer improves the spatial luminance and color uniformity, increases the luminance in a direction normal to the homogenizer and provides increased luminance through polarized light recycling within the light homogenizer and backlight. In one embodiment, the homogenizer includes a polarization-sensitive anisotropic light-scattering (PDALS) region, a non-polarization-sensitive anisotropic light-scattering region, and a substantially non-scattering region. In a further embodiment, the non-scattering region is birefringent. The spatially non-uniform incident light flux from a backlight including one or more non-extended light emitting sources is scattered efficiently by the NPDASL region and is incident on the PDALS region which backscatters light orthogonal to the polarization state desired for efficient illumination of a liquid crystal display panel. The NPDASL and the PDALS form a multiple reflection cavity that will increase the spatial luminance while improving the light recycling of the appropriate polarization state. In a further embodiment the light homogenizer includes at least one of a light collimating region and a light re-directing region.