摘要:
An enhanced light fixture containing a volumetric diffuser to control the spatial luminance uniformity and angular spread of light from the light fixture is disclosed. The volumetric diffuser provides increased spatial luminance uniformity and efficient control over the illuminance such that power reductions, reduced cost or reduced size may be achieved. The volumetric diffuser contains one or more regions of volumetric light scattering particles. The spread of illumination of light from a light emitting source can be efficiently controlled by using a thin, low cost, volumetric, diffuser to direct the light in the desired direction. This allows the reduction in number of light sources, a reduction in power requirements, or a more tailored illumination. When the volumetric diffuser is used in combination with a waveguide to extract light, the light is efficiently coupled out of the waveguide in a thin, planar surface. This transmissive diffuser can be coupled to a reflecting element such that the resulting combination is a light reflecting element with a desired light scattering profile.
摘要:
The present invention provides a polarization-sensitive light homogenizer and a backlight and display using the same. The homogenizer improves the spatial luminance and color uniformity, increases the luminance in a direction normal to the homogenizer and provides increased luminance through polarized light recycling within the light homogenizer and backlight. In one embodiment, the homogenizer includes a polarization-sensitive anisotropic light-scattering (PDALS) region, a non-polarization-sensitive anisotropic light-scattering region, and a substantially non-scattering region. In a further embodiment, the non-scattering region is birefringent. The spatially non-uniform incident light flux from a backlight including one or more non-extended light emitting sources is scattered efficiently by the NPDASL region and is incident on the PDALS region which backscatters light orthogonal to the polarization state desired for efficient illumination of a liquid crystal display panel. The NPDASL and the PDALS form a multiple reflection cavity that will increase the spatial luminance while improving the light recycling of the appropriate polarization state. In a further embodiment the light homogenizer includes at least one of a light collimating region and a light re-directing region.
摘要:
In one embodiment of this invention, a lightguide comprises a low refractive index region disposed between light extracting region and a non-scattering region. In further embodiment of this invention, volumetric scattering lightguide comprises a low refractive index region disposed between a volumetric scattering region and a non-scattering region. In some embodiments, a light emitting device comprising a volumetric scattering lightguide can angularly filter light input into the edge of a volumetric scattering lightguide by controlling the refractive index of the low refractive index region relative to the refractive index of the non-scattering region to prevent direct illumination of the volumetric scattering region, provide a luminance uniformity greater than 70%, or improve the angular luminous intensity of the light emitting device. The volumetric scattering lightguide may be curved, tapered, and a light emitting device comprising the same may further comprise at least one light source and a light redirecting element.
摘要:
The present invention provides improved light diffusing plates and films that can be used in backlights to increase brightness, provide more control over the viewing angle, reduce thickness and the reduce the overall display cost. By using a volumetric, asymmetric scattering region within a diffuser plate or film, light can be preferentially scattered more in one direction than the other direction. In backlights where the illumination light sources are substantially linear arrays, a diffuser plate or film that scatters predominantly in the direction perpendicular to the linear array will have more efficient forward light throughput than one that scatters light in a symmetric light scattering profile. In addition, a light re-directing region such as an asymmetric scattering region can efficiently allow a light-emitting device to be direct lit and edge lit, simultaneously.
摘要:
In one embodiment of this invention, a light fixture comprises a light source, a collimating element, an optical cavity and a multi-functional non-imaging optical component (MNOC) comprising an anisotropic light scattering film. In another embodiment of this invention, the MNOC further comprises a surface relief feature which redirects a portion of the incident light. The present invention provides a system and method of controlling the output of light from a light fixture. One or more volumetric anisotropic diffusing components are utilized to control both the photometric distribution and visual appearance of the light fixture. A high degree of optical control is obtained with durable components that can be easily customized to optimize optical performance in light fixtures designed as pendants, wall sconces, wallwashers, downlights, and tasklights. The luminance and color uniformity as well as the illuminance and color uniformity of illumination can be controlled and improved.
摘要:
The present invention provides improved optical elements, such as light diffusing films, plates, and lenses, which can be used in light-emitting devices, such as light fixtures to control the distribution of light projected onto illuminated objects, such as walls, sculptures, and landscaping. Compared to traditional light scattering films, plates or lenses, improvements in illuminance uniformity, optical throw, system efficacy, and aesthetic appearance are achieved. Embodiments of the invention utilize region(s) of volumetric asymmetric diffusion that allow a partial quantity of light to be transmitted without significant scattering in order to improve optical throw and illuminance uniformity. Embodiments can also eliminate hotspot and thus improve the illuminated uniformity.
摘要:
Optical and thermal splines are integrated in the external envelope of a non-planar lamp allowing the optical output of discrete light sources such as LEDs to be distributed for uniform output and the achievement of desired light distributions such as omnidirectional output. Integrated thermal splines and perimeter location of light sources allow for improved thermal management without significantly compromised optical performance.
摘要:
Optical and thermal splines are integrated in the external envelope of a non-planar lamp allowing the optical output of discrete light sources such as LEDs to be distributed for uniform output and the achievement of desired light distributions such as omnidirectional output. Opposing orientation of light sources is utilized to create integrated optical and thermal splines for improved thermal and optical performance.
摘要:
Designs for collimating optical elements and assemblies are provided which are fabricated by a subtractive process using lasers or other tools to create embedded void spaces that provide reflecting walls for internally reflective optical elements. The designs have advantages in cost, reduced development time, and performance. Light from multiple light sources can be mixed and collimated. Some embodiments provide the ability to integrate a large number of internally reflective optics into a single component and very large components can be made. Embodiments are designed for manufacturing and can be made without molding tooling.