摘要:
A magneto-resistive read head having a “parasitic shield” in a data storage system provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A magneto-resistive read head having a "parasitic shield" provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A magneto-resistive read head having a “parasitic shield” provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A magneto-resistive read head having a "parasitic shield" provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
An MR head receives ESD protection from a mechanism that automatically and releasably shorts the MR head whenever a suspension assembly on which the head is mounted is not installed in an HDA. The suspension assembly includes a flexure underlying a load beam, which is connected to an actuator arm. The MR head is mounted to a distal end of the flexure, leads from components of the MR head being brought out in the form of MR wire leads running along the load beam and the support arm to a nearby terminal connecting side tab. The conductors are separated and exposed at a designated point along the flexure to provide a contact region. A shorting bar, which comprises an electrically conductive member attached to the actuator arm, automatically connects the MR wire leads at the contact region when absence of support for the MR head permits the load beam to bend sufficiently toward the shorting bar. Thus, when the assembly is removed from installation in an HDA, the flexure is permitted to move toward the shorting bar, bringing the contact region and the shorting bar in electrical contact to short the MR wired leads and thereby disable the MR sensor. When the assembly is installed in an HDA, the MR head is supported by an air bearing or the disk itself, depending upon whether the disk is rotating or stopped, respectively. In either case, the load beam is not permitted to droop and the shorting bar cannot contact the conductors, thus activating the MR sensor. Temporary ESD protection mechanisms are also provided, these being removable prior to operation of the HDA by breaking and removing various temporary shorting mechanisms.
摘要:
An MR head receives ESD protection from a mechanism that automatically and releasably shorts the MR head whenever a suspension assembly on which the head is mounted is not installed in an HDA. The suspension assembly includes a flexure underlying a load beam, which is connected to an actuator arm. The MR head is mounted to a distal end of the flexure, leads from components of the MR head being brought out in the form of MR wire leads running along the load beam and the support arm to a nearby terminal connecting side tab. The conductors are separated and exposed at a designated point along the flexure to provide a contact region. A shorting bar, which comprises an electrically conductive member attached to the actuator arm, automatically connects the MR wire leads at the contact region when absence of support for the MR head permits the load beam to bend sufficiently toward the shorting bar. Thus, when the assembly is removed from installation in an HDA, the flexure is permitted to move toward the shorting bar, bringing the contact region and the shorting bar in electrical contact to short the MR wired leads and thereby disable the MR sensor. When the assembly is installed in an HDA, the MR head is supported by an air bearing or the disk itself, depending upon whether the disk is rotating or stopped, respectively. In either case, the load beam is not permitted to droop and the shorting bar cannot contact the conductors, thus activating the MR sensor. Temporary ESD protection mechanisms are also provided, these being removable prior to operation of the HDA by breaking and removing various temporary shorting mechanisms.
摘要:
An electrically conductive grounding unit is situated between the integrated lead suspension and the tool block which is used to assemble it to the transducer head. The grounding unit grounds the uninsulated traces on the integrated lead suspension, thereby eliminating the danger of imparting static electricity to the transducer head during the assembly process. The grounding unit carries unwanted charges from the electrical traces on the suspension to the grounded tool block. The grounding unit is preferably fabricated from ceramic materials.