Abstract:
A method, apparatus, and system are provided for implementing track following using signal asymmetry metrics monitored during read back in hard disk drives (HDDs). Signal asymmetry metrics monitored during read back are used together with a position error signal (PES) to correct and guide the position of a read sensor with respect to a written track in the HDD.
Abstract:
Determining the radial position of a first read head of a storage device includes reading servo data from a storage media platter surface using the first read head, deriving from that servo data a first positron error signal representing a first estimate of the radial position of the first read head, reading the servo data from the storage media platter surface using a different read head, deriving from that servo data a second position error signal representing an estimate of the radial position of the different read head, and combining the first estimate of the radial position of the first read head and the estimate of the radial position of the different read head to obtain a revised estimate of the radial position of the first read head. The combining could include taking account of a known positional offset between the first read head and the different read head.
Abstract:
Methods including determining a distribution of a position error signal (PES) of a magnetoresistive head by obtaining PES data from a servo controller associated with the magnetoresistive head; determining an encroachment function of a storage disc; and determining a track density of the storage disc by considering both the PES distribution and the encroachment function.
Abstract:
Resistivity sense bias circuits are described herein. An example resistivity sense bias circuit for use with a magnetoresistive read head includes a current biasing portion configured to provide a bias current across the magnetoresistive read head thereby establishing a bias voltage across the magnetoresistive read head, a resistivity sensing portion coupled to the current biasing portion and configured to sense a change in the bias current based on a resistivity change of the magnetoresistive read head, and a voltage source to provide the bias voltage and to adjust the bias voltage in response to the resistivity change of the magnetoresistive read head.
Abstract:
An MR element includes: a free layer having a direction of magnetization that changes in response to a signal magnetic field; a pinned layer having a fixed direction of magnetization; and a spacer layer disposed between these layers. The spacer layer includes a first nonmagnetic metal layer and a second nonmagnetic metal layer each made of a nonmagnetic metal material, and a semiconductor layer that is made of a material containing an oxide semiconductor and that is disposed between the first and second nonmagnetic metal layers. The MR element has a resistance-area product within a range of 0.1 to 0.3Ω·μm2, and the spacer layer has a conductivity within a range of 133 to 432 S/cm.
Abstract:
A magnetic recording medium capable of alleviating thermal fluctuation and improving the recording density includes a functional layer (12) containing a magnetic material, and a recording layer (11) overlying the functional layer and containing a magnetic material. The recording layer contains a plurality of magnetic grains (51) and a nonmagnetic material (52) existing among the magnetic grains, and the functional layer and the recording layer exert exchange coupling interaction in a direction making a substantially orthogonal relation with each other at the room temperature.
Abstract:
A magneto-resistance effect element comprises a stacked body which comprises a pinned layer having a fixed magnetization direction, a free layer having a magnetization direction that varies according to an external magnetic field, and a nonmagnetic spacer layer which is interposed between the pinned layer and the free layer. The stacked body having a constricted shape in which at least one part of the spacer layer is constricted when viewed from at least one direction perpendicular to a stacked direction of the stacked body.
Abstract:
Provided is a data storage device in which read and write heads can be desirably located with respect to servo tracks from the viewpoint of linearity of a PES on the premise that a read write offset exists. A read write offset value, which is a deviation amount between write and read heads in a radial direction of a disk-shaped storage medium, is set equivalent to an integer number N of servo tracks.
Abstract:
A magnetic recording system is provided having a write head employing a combination of magnetic write field gradient and thermal gradient to write data on a ‘thermal spring’ magnetic recording media. The write head comprises a magnetic element using a write current to induce a magnetic write field at the magnetic media and a thermal element using a very small aperture laser to heat a portion of the media. The thermal spring magnetic media comprises [comprises] first and second stacks providing two exchange coupled ferromagnetic layers having different Curie temperatures [The first stack has a high magneto-crystalline anisotropy, a relatively low saturation magnetization and a low Curie temperature.] [The second stack has a relatively low magneto-crystalline anisotropy, a high saturation magnetization and a high Curie temperature.] The magnetic field gradient and the thermal gradient are arranged to substantially overlap at the trailing edge of the heated portion of the magnetic media allowing data at high density with high thermal stability to be recorded on the rapidly cooling thermal spring magnetic recording media.
Abstract:
A circuit to detect pin layer reversal including an input circuit to receive an input signal having a first portion to indicate a pin layer reversal and having a second portion to indicate a servo sync mark, a first servo sync mark detector for detecting a positive servo sync mark from the input signal, a second servo sync mark detector for detecting a negative servo sync mark from the input signal, and a circuit responsive to the positive servo sync mark and the negative servo sync mark to generate a signal to indicate if the servo sync mark has been reversed and to generate a signal to indicate the pin layer reversal.