摘要:
A method and a system for creating a network of virtual machines in a communication network including a head node virtual machine (VM) for distribution and processing of a workload. The head node VM is created and hosted at a server computer. The head node VM specifies the workload that is assignable into sub-tasks. A pool of physical computing devices for hosting a plurality of replica VMs is identified. The head node VM is replicated at each one of the plurality of replica VMs. The plurality of replica VMs coordinate to assign at least one workload sub-task to the each one of the plurality of replica VMs. The at least one assigned workload sub-tasks is processed at the respective each one of the plurality of replica VMs to provide at least one sub-task result. The at least one sub-task result is received at the head node VM.
摘要:
A method and a system for creating a network of virtual machines in a communication network including a head node virtual machine (VM) for distribution and processing of a workload. The method comprises creating the head node VM hosted at a server computer, the head node VM specifying the workload, the workload being assignable into sub-tasks; identifying a pool of hosts for hosting a plurality of replica VMs, each of the pool of hosts comprising a physical computing device; replicating the head node VM at an each one of the plurality of replica VMs; coordinating amongst the plurality of replica VMs to assign at least one workload sub-task to the each one of the plurality of replica VMs; processing the at least one assigned workload sub-tasks at the respective each one of the plurality of replica VMs to provide at least one sub-task result; and receiving the at least one sub-task result at the head node VM.
摘要:
Network presence of a computing device in a cloud computing network is maintained while power consumption of the computing device is reduced. When the computing device is determined to enter an idle state, at least some of the operations of the computing device running in a virtual machine environment are migrated to a server within the cloud computing network while maintaining connectivity of the computing device to the cloud computing network. When the computing device is determined to be in the idle state, the computing device is put into a sleep mode to reduce power consumption of the computing device. When the computing device is determined to be in an active state, the computing device is woken, and the migrated operations are returned from the server to the computing device. This reduces power consumption of the computing device while maintaining the network presence of the computing device in the cloud computing network.
摘要:
The disclosed subject matter relates to an architecture that can opportunistically leverage existing periods of inactivity or low activity for sending data at virtually no marginal cost. In particular, the architecture can receive data that is to be transmitted over a communications network. The data can be examined to determine whether or not the data is delay-tolerant. If so, then such data can be stored to a staging queue. The data can then be transmitted at a later time, particularly during a high-energy state facilitated by a different data transaction, but for which there are inactive or low-activity times.
摘要:
Network presence of a computing device in a cloud computing network is maintained while power consumption of the computing device is reduced. When the computing device is determined to enter an idle state, at least some of the operations of the computing device running in a virtual machine environment are migrated to a server within the cloud computing network while maintaining connectivity of the computing device to the cloud computing network. When the computing device is determined to be in the idle state, the computing device is put into a sleep mode to reduce power consumption of the computing device. When the computing device is determined to be in an active state, the computing device is woken, and the migrated operations are returned from the server to the computing device. This reduces power consumption of the computing device while maintaining the network presence of the computing device in the cloud computing network.