Abstract:
Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Abstract:
Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Abstract:
Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Abstract:
The present application provides intermediates for preparing prostaglandin analogues and processes for preparing prostaglandin analogues and intermediates thereof. The intermediates include: A compound of formula (6): R1 represents H, C1-C5-alkyl, or benzyl, in particular isopropyl.
Abstract:
Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Abstract:
A method for measuring a precision of a star sensor and a system using the same may be provided. The method may comprise steps of: 1) fixing the star sensor on the Earth; 2) inputting a current time (T) of a measuring start time relative to a J2000.0 time; 3) determining a directional vector of the navigation star in a J2000.0 Cartesian coordinate system at the current time (T) according to a right ascension and a declination of the navigation star in the J2000.0 Cartesian coordinate system and visual movement parameters (α′, δ′) of the navigation star in the direction of the right ascension and the declination which are stored in the star sensor; 4) converting the directional vector of the navigation star in the J2000.0 Cartesian coordinate system into a directional vector of the navigation star in an ecliptic coordinate system; 5) converting the directional vector of the navigation star in the ecliptic coordinate system into a directional vector (vCRFT) of the navigation star in a celestial coordinate system; and 6) converting the directional vector (vCRFT) of the navigation star in the celestial coordinate system into a directional vector (vTRF) of the navigation star in a terrestrial coordinate system, and obtaining the precision of the star sensor based on the directional vector (vTRF) of the navigation star in the terrestrial coordinate system.
Abstract:
A system and method are disclosed for adaptively accommodating a high amplitude downstream signal in a DSL modem. High amplitude downstream signals are common with local loop lengths of less than about 6,000 feet and can saturate DSL modem components and impair DSL service if not effectively accommodated.In general, a DSL system detects a high amplitude downstream DSL signal and adjusts a DSL modem analog front end in response to the detected high amplitude downstream DSL signal so that analog front end components of a DSL modem are not saturated by the high amplitude downstream DSL signal. Pursuant to one embodiment, a digital signal processor detects the high amplitude DSL signal and, in response, decreases a gain of a first stage receiver to accommodate the high amplitude downstream DSL signal. Another embodiment introduces additional attenuation of the downstream DSL signal to attenuate high amplitude downstream DSL signals before they enter first stage receiver amplifier circuits.
Abstract:
An odd-order low-pass microfilter is disclosed for being interposed between a home telephone wiring network and a POTS, or voice-band, device to separate voice-band signals from higher frequency signals, such as ADSL signals and home networking signals. The filter topology is substantially symmetric so that the filter is reversible in that either end of the filter may be directly coupled to the home telephone wiring network without impairing high frequency signal performance or the filter characteristic of the filter. In one embodiment, the filter is a three-pole filter with a single capacitor disposed between a pair of coupled inductors. Each of the coupled inductors advantageously has an interwinding capacitance over about 100 pF to improve the filter frequency response without increasing the cost of the filter. In another embodiment, the filter is a reversible three-pole filter with a single capacitor disposed between first and second pairs of uncoupled, or discrete, inductors.
Abstract:
A system and method for a modular target. The modular target system has a target coupled to at least one target support. The target support is coupled to a base. The target support has notches on the upper distal end. The modular target system has separate components which can be assembled and disassembled without coupling devices such as bolts, screws, etc. This allows the modular target to be stored in more compact locations and configurations.
Abstract:
The present application provides intermediates for preparing prostaglandin analogues and processes for preparing prostaglandin analogues and intermediates thereof. The intermediates include: A compound of formula (6): R1 represents H, C1-C5-alkyl, or benzyl, in particular isopropyl.