摘要:
A method for measuring a precision of a star sensor and a system using the same may be provided. The method may comprise steps of: 1) fixing the star sensor on the Earth; 2) inputting a current time (T) of a measuring start time relative to a J2000.0 time; 3) determining a directional vector of the navigation star in a J2000.0 Cartesian coordinate system at the current time (T) according to a right ascension and a declination of the navigation star in the J2000.0 Cartesian coordinate system and visual movement parameters (α′, δ′) of the navigation star in the direction of the right ascension and the declination which are stored in the star sensor; 4) converting the directional vector of the navigation star in the J2000.0 Cartesian coordinate system into a directional vector of the navigation star in an ecliptic coordinate system; 5) converting the directional vector of the navigation star in the ecliptic coordinate system into a directional vector (vCRFT) of the navigation star in a celestial coordinate system; and 6) converting the directional vector (vCRFT) of the navigation star in the celestial coordinate system into a directional vector (vTRF) of the navigation star in a terrestrial coordinate system, and obtaining the precision of the star sensor based on the directional vector (vTRF) of the navigation star in the terrestrial coordinate system.
摘要:
Recombinant bacteria capable of metabolizing sucrose are described. The recombinant bacteria comprise in their genome or on at least one recombinant construct, a novel nucleotide sequence encoding a polypeptide having sucrose transporter activity and a nucleotide sequence encoding a polypeptide having sucrose hydrolase activity. These nucleotide sequences are each operably linked to the same or a different promoter. Recombinant bacteria capable of metabolizing sucrose to produce glycerol and/or glycerol-derived products such as 1,3-propanediol and 3-hydroxypropionic acid are also described.
摘要:
Recombinant bacteria capable of metabolizing sucrose are described. The recombinant bacteria comprise in their genome or on at least one recombinant construct, a novel nucleotide sequence encoding a polypeptide having sucrose transporter activity and a nucleotide sequence encoding a polypeptide having sucrose hydrolase activity. These nucleotide sequences are each operably linked to the same or a different promoter. Recombinant bacteria capable of metabolizing sucrose to produce glycerol and/or glycerol-derived products such as 1,3-propanediol and 3-hydroxypropionic acid are also described.
摘要:
A method for measuring a precision of a star sensor and a system using the same may be provided. The method may comprise steps of: 1) fixing the star sensor on the Earth; 2) inputting a current time (T) of a measuring start time relative to a J2000.0 time; 3) determining a directional vector of the navigation star in a J2000.0 Cartesian coordinate system at the current time (T) according to a right ascension and a declination of the navigation star in the J2000.0 Cartesian coordinate system and visual movement parameters (α′, δ′) of the navigation star in the direction of the right ascension and the declination which are stored in the star sensor; 4) converting the directional vector of the navigation star in the J2000.0 Cartesian coordinate system into a directional vector of the navigation star in an ecliptic coordinate system; 5) converting the directional vector of the navigation star in the ecliptic coordinate system into a directional vector (vCRFT) of the navigation star in a celestial coordinate system; and 6) converting the directional vector (vCRFT) of the navigation star in the celestial coordinate system into a directional vector (vTRF) of the navigation star in a terrestrial coordinate system, and obtaining the precision of the star sensor based on the directional vector (vTRF) of the navigation star in the terrestrial coordinate system.
摘要:
This invention provides a composite material having a matrix of structural material containing embedded zones of soft elastic material and zones of solid relatively high density material within the soft elastic material. By selecting a particular resonance frequency for the subunits of soft elastic material and solid high density material, frequencies just lower than the resonance frequencies will be unable to propagate through the material and be strongly reflected or absorbed. Such material may be used in the manufacture of filters or shields against particular target frequencies. Subunits having a variety of resonance frequencies may provide a broader range of frequencies that the material may shield.