摘要:
Techniques for managing interference in a wireless network are described. In an aspect, reduce interference requests and interference indicators may be used for interference management to enable operation in scenarios with dominant interferers. In one design, a terminal may receive a reduce interference request from a first base station requesting lower interference on specified time-frequency resources. The terminal may also receive an interference indicator conveying the interference observed by a second base station. The terminal may determine its transmit power based on the reduce interference request and the interference indicator. For example, the terminal may determine an initial transmit power based on the reduce interference request (or the interference indicator) and may adjust the initial transmit power based on the interference indicator (or the reduce interference request) to obtain its transmit power. The terminal may transmit data to a serving base station at the determined transmit power.
摘要:
Techniques for transmitting null pilots to support interference estimation in a wireless network are described. A null pilot is non-transmission on designated time-frequency resources by a cell or a cluster of cells supporting cooperative transmission to a UE. The received power of the null pilot from the cell or cluster of cells may be indicative of interference from other cells. In one design, a cell in the cluster may determine resources for sending a null pilot by the cell. The cell may transmit the null pilot (i.e., send no transmissions) on the resources to allow UEs to estimate out-of-cluster interference. Some or all cells in the cluster may transmit null pilots on the same resources. The cell may receive interference and channel information from the UE and may send data transmission to the UE based on the interference and/or channel information. Remaining cells in the cluster may reduce interference to the UE.
摘要:
Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations.
摘要:
Techniques for managing interference in a wireless network are described. In an aspect, reduce interference requests and interference indicators may be used for interference management to enable operation in scenarios with dominant interferers. In one design, a terminal may receive a reduce interference request from a first base station requesting lower interference on specified time-frequency resources. The terminal may also receive an interference indicator conveying the interference observed by a second base station. The terminal may determine its transmit power based on the reduce interference request and the interference indicator. For example, the terminal may determine an initial transmit power based on the reduce interference request (or the interference indicator) and may adjust the initial transmit power based on the interference indicator (or the reduce interference request) to obtain its transmit power. The terminal may transmit data to a serving base station at the determined transmit power.
摘要:
Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations.
摘要:
Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations.
摘要:
Techniques for transmitting null pilots to support interference estimation in a wireless network are described. A null pilot is non-transmission on designated time-frequency resources by a cell or a cluster of cells supporting cooperative transmission to a UE. The received power of the null pilot from the cell or cluster of cells may be indicative of interference from other cells. In one design, a cell in the cluster may determine resources for sending a null pilot by the cell. The cell may transmit the null pilot (i.e., send no transmissions) on the resources to allow UEs to estimate out-of-cluster interference. Some or all cells in the cluster may transmit null pilots on the same resources. The cell may receive interference and channel information from the UE and may send data transmission to the UE based on the interference and/or channel information. Remaining cells in the cluster may reduce interference to the UE.
摘要:
Techniques for managing interference in a wireless network are described. A base station may receive enhanced pilot measurement reports from user equipments (UEs) and may make an interference management decision based on the received reports. The base station may select a serving base station for a UE based on an enhanced pilot measurement report received from the UE. The base station may determine resources with a low target interference level at a neighbor base station and may avoid scheduling a UE for uplink transmission on the resources. The base station may also determine whether to reserve resources for a neighbor base station based on data performance of the neighbor base station, whether the neighbor base station observes high interference from UEs served by the base station, or whether UEs served by the neighbor base station observe high interference from the base station, which may be determined based on the enhanced pilot measurement reports.
摘要:
Techniques for managing interference in a wireless network are described. A base station may receive enhanced pilot measurement reports from user equipments (UEs) and may make an interference management decision based on the received reports. The base station may select a serving base station for a UE based on an enhanced pilot measurement report received from the UE. The base station may determine resources with a low target interference level at a neighbor base station and may avoid scheduling a UE for uplink transmission on the resources. The base station may also determine whether to reserve resources for a neighbor base station based on data performance of the neighbor base station, whether the neighbor base station observes high interference from UEs served by the base station, or whether UEs served by the neighbor base station observe high interference from the base station, which may be determined based on the enhanced pilot measurement reports.
摘要:
Systems and methodologies are described that facilitate indicating a dominant interferer to a target serving base station in a wireless communication environment. A mobile device can detect presence or absence of a dominant interferer. Further, an access probe that includes information related to the presence or absence of the dominant interferer can be generated. For example, the information can be included in a payload of the access probe as an explicit flag, an explicit indication of an interference level, a Channel Quality Indicator (CQI) value (e.g., reserved versus non-reserved, . . . ), etc. Moreover, the access probe can be transmitted to the target serving base station to initiate an access procedure. The target serving base station can select a time-frequency resource to be utilized for a responsive downlink transmission (e.g. access grant signal, subsequent access related message, . . . ) as a function of the information included in the access probe.