Abstract:
A bonding method includes attracting and holding a first substrate by using a first holder; attracting and holding a second substrate by using a second holder; and forming a combined substrate by moving the first holder and the second holder relative to each other to bring the first substrate and the second substrate into contact with each other. The bonding method includes heating the first substrate and the second substrate or the combined substrate; and cooling the heated combined substrate by using a cooling unit. In the cooling, bending of the combined substrate is controlled by forming a temperature difference in the combined substrate.
Abstract:
A bonding method includes attracting and holding a first substrate by using a first holder; attracting and holding a second substrate by using a second holder; and forming a combined substrate by moving the first holder and the second holder relative to each other to bring the first substrate and the second substrate into contact with each other. The bonding method includes heating the first substrate and the second substrate or the combined substrate; and cooling the heated combined substrate by using a cooling unit. In the cooling, bending of the combined substrate is controlled by forming a temperature difference in the combined substrate.
Abstract:
A wiping pad includes: a scraping edge provided to cross a long side direction of a discharge port and come into contact with the discharge port and nozzle side surfaces, and a lead-out passage provided ahead of the scraping edge in a moving direction along a nozzle long side direction to drain a treatment solution scraped away with the scraping edge, wherein the lead-out passage is a V-shaped groove formed along the moving direction on a pad upper surface side, and the V-shaped groove has the scraping edge formed at a rear end edge portion thereof and is formed to gradually increase in groove width and depth toward a front thereof from the scraping edge.
Abstract:
A wiping pad includes: a scraping edge provided to cross a long side direction of a discharge port and come into contact with the discharge port and nozzle side surfaces, and a lead-out passage provided ahead of the scraping edge in a moving direction along a nozzle long side direction to drain a treatment solution scraped away with the scraping edge, wherein the lead-out passage is a V-shaped groove formed along the moving direction on a pad upper surface side, and the V-shaped groove has the scraping edge formed at a rear end edge portion thereof and is formed to gradually increase in groove width and depth toward a front thereof from the scraping edge.